Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(10): 585, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251503

RESUMO

A new method of reducing the amount of reagent and sample for determination of thrombomodulin (TM) was developed based on competitive immunoreaction using a portable glucometer (PGM). Two types of nanocomposites, TM protein-modified magnetic nanoparticles (MNPs-TM) and TM antibody-/glucose oxidase-modified gold nanoparticles (Ab-GNPs-GOx), were prepared. Their binding product, MNPs-TM-Ab-GNPs-GOx, in the microvolumetric solution was used to catalyze the oxidation of glucose, leading to a decline of the glucose content. The TM-involved competitive immunoreaction had a negative effect on the generation of MNPs-/GNPs-based nanocomposites and inhibited the catalytic oxidation of glucose. The glucose content difference in the microvolumetric solution, which was revealed by a PGM, was in proportion to the logarithm of the TM concentration from 25 ng mL-1 to 2.5 µg mL-1. The limit of detection was 5.7 ng mL-1. Microvolumetric solution and a PGM were used in the measurement, which overcame some deficiencies of classical methods in chemo/biosensing, for example, special instrument, complicated measurement procedure, and high cost.


Assuntos
Glucose Oxidase , Ouro , Limite de Detecção , Trombomodulina , Ouro/química , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/instrumentação , Imunoensaio/métodos , Nanopartículas de Magnetita/química , Nanocompostos/química
2.
Talanta ; 274: 125943, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564823

RESUMO

Fenton chemistry has aroused widespread concern due to its application in the green oxidation and mineralization of organic wastes. Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate ions (PPi) and provides a thermodynamic driving force for many biosynthetic reactions. Fluoride (F-) is widely applied to fight against tooth decay and reduce cavities. The electrochemical determination of PPase activity and F- was realized based on Fenton chemistry in this work. Glassy carbon electrode modified with poly (azure A) and acetylene black (GCE/PAA-AB) was fabricated. Hydroxyl radicals (∙OH) that were generated from a Cu2+-catalyzed Fenton-type reaction could oxidize PAA in the near-neutral medium, leading to a great increase of the cathodic peak current (Ipc). A coordination reaction between PPi and Cu2+ exerted a negative effect on Fenton reaction and hindered the Ipc enhancement. Cu2+-PPi complex was decomposed due to the hydrolysis of PPi induced by PPase, which caused the reappearance of the notably increased current response. F- could effectively inhibit PPase activity. As a result, the stable Cu2+-PPi complex remained and the high Ipc suffered from the decline again. The Ipc difference was used for the highly sensitive determination of PPase activity in the content range of 0.001-20 mU mL-1 with a detection of limit (LOD) at 0.6 µU mL-1 and that of F- in the concentration range of 0.01-100 µM with a LOD at 7 nM. The proposed PPase and F- sensor displayed a good selectivity, stability and reproducibility, and a high accuracy.


Assuntos
Técnicas Eletroquímicas , Fluoretos , Ferro , Fluoretos/química , Ferro/química , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cobre/química , Eletrodos , Pirofosfatases/metabolismo , Pirofosfatases/análise , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/química , Limite de Detecção , Ensaios Enzimáticos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA