Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766656

RESUMO

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Assuntos
Diferenciação Celular , Nanopartículas , Células-Tronco Neurais , Diferenciação Celular/efeitos dos fármacos , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Camundongos , Nanopartículas/química , Metilação/efeitos dos fármacos , Hidróxidos/química , Hidróxidos/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Tamanho da Partícula , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Adenosina/farmacologia , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia
2.
Small Methods ; : e2301283, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509851

RESUMO

Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.

3.
Asian J Pharm Sci ; 18(4): 100835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37645682

RESUMO

Alzheimer's disease (AD) is a typical neurodegenerative disease that leads to irreversible neuronal degeneration, and effective treatment remains elusive due to the unclear mechanism. We utilized biocompatible mesenchymal stem cell-derived extracellular vesicles as carriers loaded with the CB2 target medicine AM1241 (EVs-AM1241) to protect against neurodegenerative progression and neuronal function in AD model mice. According to the results, EVs-AM1241 were successfully constructed and exhibited better bioavailability and therapeutic effects than bare AM1241. The Morris water maze (MWM) and fear conditioning tests revealed that the learning and memory of EVs-AM1241-treated model mice were significantly improved. In vivo electrophysiological recording of CA1 neurons indicated enhanced response to an auditory conditioned stimulus following fear learning. Immunostaining and Western blot analysis showed that amyloid plaque deposition and amyloid ß (Aß)-induced neuronal apoptosis were significantly suppressed by EVs-AM1241. Moreover, EVs-AM1241 increased the number of neurons and restored the neuronal cytoskeleton, indicating that they enhanced neuronal regeneration. RNA sequencing revealed that EVs-AM1241 facilitated Aß phagocytosis, promoted neurogenesis and ultimately improved learning and memory through the calcium-Erk signaling pathway. Our study showed that EVs-AM1241 efficiently reversed neurodegenerative pathology and enhanced neurogenesis in model mice, indicating that they are very promising particles for treating AD.

4.
Signal Transduct Target Ther ; 8(1): 245, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357239

RESUMO

Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.


Assuntos
Axônios , Traumatismos da Medula Espinal , Humanos , Axônios/patologia , Axônios/fisiologia , Regeneração Nervosa/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Neurônios/patologia , Células-Tronco
5.
J Nanobiotechnology ; 21(1): 91, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922816

RESUMO

Spinal cord injury (SCI) causes severe neurological dysfunction and currently has no effective treatment. Due to the complex pathophysiological processes associated with SCI and the limited efficacy of single strategies, the need for combined strategies for effective SCI therapy is becoming increasingly apparent. In this study, we evaluated the combined effects of layered double hydroxide-coupled NT3 (MgFe-LDH/NT3) nanoparticles (NPs) and ultrasound (US) both in vitro and in vivo. Combined treatment promoted neural stem cell (NSC) differentiation into neurons and exerted anti-inflammatory effects in vitro. Furthermore, combined therapy promoted behavioural and electrophysiological performance at eight weeks in a completely transected murine thoracic SCI model. Additional RNA sequencing revealed that ultrasonic-induced Piezo1 downregulation is the core mechanism by which combined therapy promotes neurogenesis and inhibits inflammation, and the Piezo1/NF-κB pathways were identified. Hence, the findings of this study demonstrated that the combination of ultrasound and functional NPs may be a promising novel strategy for repairing SCI.


Assuntos
Nanoestruturas , Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Regulação para Baixo , Traumatismos da Medula Espinal/tratamento farmacológico , Canais Iônicos/farmacologia
6.
J Nanobiotechnology ; 20(1): 360, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918769

RESUMO

Exosomes show potential for treating patients with spinal cord injury (SCI) in clinical practice, but the underlying repair mechanisms remain poorly understood, and biological scaffolds available for clinical transplantation of exosomes have yet to be explored. In the present study, we demonstrated the novel function of Gel-Exo (exosomes encapsulated in fibrin gel) in promoting behavioural and electrophysiological performance in mice with SCI, and the upregulated neural marker expression in the lesion site suggested enhanced neurogenesis by Gel-Exo. According to the RNA-seq results, Vgf (nerve growth factor inducible) was the key regulator through which Gel-Exo accelerated recovery from SCI. VGF is related to myelination and oligodendrocyte development according to previous reports. Furthermore, we found that VGF was abundant in exosomes, and Gel-Exo-treated mice with high VGF expression indeed showed increased oligodendrogenesis. VGF was also shown to promote oligodendrogenesis both in vitro and in vivo, and lentivirus-mediated VGF overexpression in the lesion site showed reparative effects equal to those of Gel-Exo treatment in vivo. These results suggest that Gel-Exo can thus be used as a biocompatible material for SCI repair, in which VGF-mediated oligodendrogenesis is the vital mechanism for functional recovery.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Animais , Exossomos/metabolismo , Fibrina/metabolismo , Fibrina/uso terapêutico , Camundongos , Neurogênese , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia
7.
Adv Drug Deliv Rev ; 187: 114379, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667464

RESUMO

Biomaterials have provided promising strategies towards improving the functions of injured tissues of the nervous system. Recently, 2D nanomaterials, such as graphene, layered double hydroxides (LDHs), and black phosphorous, which are characterized by ultrathin film structures, have attracted much attention in the fields of neural repair and regeneration. 2D nanomaterials have extraordinary physicochemical properties and excellent biological activities, such as a large surface-area-to-thickness ratio, high levels of adhesion, and adjustable flexibility. In addition, they can be designed to have superior biocompatibility and electrical or nano-carrier properties. To date, many 2D nanomaterials have been used for synaptic modulation, neuroinflammatory reduction, stem cell fate regulation, and injured neural cell/tissue repair. In this review, we discuss the advances in 2D nanomaterial technology towards novel neurological applications and the mechanisms underlying their unique features. In addition, the future outlook of functional 2D nanomaterials towards addressing the difficult issues of neuropathy has been explored to introduce a promising strategy towards repairing and regenerating the injured nervous system.


Assuntos
Grafite , Nanoestruturas , Materiais Biocompatíveis , Grafite/química , Humanos , Nanoestruturas/química
8.
ACS Appl Mater Interfaces ; 13(41): 48386-48402, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618442

RESUMO

Inefficient differentiation and poor engraftment hinder the clinical applications of mesenchymal stem cell (MSC)-based cell therapies in regenerative medicine. Layered double hydroxide (LDH) nanoparticles are sheet-like materials with desirable biocompatibility and anion-exchange properties and have been widely applied as drug and nucleotide carriers in the field of tissue repair. However, few studies have focused on the biological effects of LDH itself. In this study, we demonstrated the novel function of LDH in stimulating osteogenic differentiation of bone marrow-derived MSCs (BMSCs). The expression of osteogenic-related genes, alkaline phosphatase (ALP) activity, and calcium deposits were significantly increased after LDH treatment. Mechanistic analysis performed with RNA sequencing revealed that LDH promoted osteogenesis by targeting the LGR5/ß-catenin axis. LDH also inactivated IKK/NF-κB signaling under LPS-triggered inflamed conditions, suggesting the dual benefits of LDH in enhancing bone regeneration and alleviating the inflammatory response. Furthermore, we utilized LDH as the transport vehicle of the osteoinductive miRNA let-7d to synergistically regulate BMSCs toward the osteoblastic lineage. The LDH/let-7d complex resulted in a better induction of osteogenesis than LDH alone. For cell transplantation, BMSCs were seeded in LDH/let-7d-incorporated fibrin scaffolds, which proved enhanced osteoinduction capability in the subcutaneous ectopic osteogenesis model in nude mice. Taken together, this study provides a novel strategy for effective and synergistic improvement of osteogenesis via LDH-mediated delivery of miRNA let-7d, thus shedding light on the future application of LDH in regenerative medicine.


Assuntos
Portadores de Fármacos/química , Hidróxidos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/uso terapêutico , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos Nus , MicroRNAs/farmacologia , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos
9.
Adv Sci (Weinh) ; 8(9): 2003535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977050

RESUMO

Leukemia inhibitory factor (LIF), an indispensable bioactive protein that sustains self-renewal and pluripotency in stem cells, is vital for mouse embryonic stem cell (mESC) culture. Extensive research is conducted on reliable alternatives for LIF as its clinical application in stable culture and large-scale expansion of ESCs is limited by its instability and high cost. However, few studies have sought to replace LIF with nanoparticles to provide a xeno-free culture condition. MgAl-LDH (layered double hydroxide) nanoparticles can partially replace LIF in maintaining pluripotency of mESCs; however, the requirement and tolerance for aluminum ions in mice are far lesser than those of iron ions. Hence, MgFe-LDH nanoparticles are selected for this study. MgFe-LDH is superior to MgAl-LDH in maintaining self-renewal and pluripotency of mESCs, in the absence of LIF and mouse embryonic fibroblast. Furthermore, combined transcriptomic and proteomic analysis confirms that MgFe-LDH can activate the LIF receptor (LIFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B(AKT), LIFR/JAK/janus kinase (JAK)/signal transducer and activator of transcription 3(STAT3), and phospho-signal transducer and activator of transcription 3(p-STAT3)/ten-eleven translocation (TET) signaling pathways, while the extra Fe2+ provided by MgFe-LDH would also enhance TET1/2 abundance thus affecting the TET1/2 regulated pluripotency related marker expression and TET1/2 meditated DNA demethylation. These results suggest that MgFe-LDH nanoparticles can thus be used as an affordable and efficient replacement for LIF in mESC cultivation.


Assuntos
Hidróxidos/metabolismo , Ferro/metabolismo , Fator Inibidor de Leucemia/metabolismo , Magnésio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Nanopartículas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Transdução de Sinais
10.
ACS Nano ; 15(2): 2812-2830, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33527830

RESUMO

Immune microenvironment amelioration and reconstruction by functional biomaterials has become a promising strategy for spinal cord injury (SCI) recovery. In this study, we evaluated the neural regeneration and immunoregulation functions of Mg/Al layered double hydroxide (Mg/Al-LDH) nanoparticles in completely transected and excised mice and revealed the immune-related mechanisms. LDH achieved significant performance in accelerating neural stem cells (NSCs) migration, neural differentiation, L-Ca2+ channel activation, and inducible action potential generation. In vivo, the behavioral and electrophysiological performance of SCI mice was significantly improved by LDH implantation, with BrdU+ endogenous NSCs and neurons clearly observed in the lesion sites. According to RNA-seq and ingenuity pathway analysis, transforming growth factor-ß receptor 2 (TGFBR2) is the key gene through which LDH inhibits inflammatory responses and accelerates neural regeneration. Significant colocalization of TGFBR2 and LDH was found on the cell membranes of NSCs both in vitro and in vivo, and LDH increased the expression of TGF-ß2 in NSCs and activated the proliferation of precursor neural cells. LDH decreased the expression of M1 markers and increased the expression of M2 markers in both microglia and bone marrow-derived macrophages, and these effects were reversed by a TGFBR2 inhibitor. In addition, as a carrier, LDH loaded with NT3 exhibited better recovery effects with regard to the basso mouse scale score, motor evoked potential performance, and regenerated neural cell numbers than LDH itself. Thus, we have developed Mg/Al-LDH that can be used to construct a suitable immune microenvironment for SCI recovery and have revealed the targeted receptor.


Assuntos
Nanopartículas , Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Hidróxidos , Camundongos , Células-Tronco Neurais/transplante , Neurogênese , Fatores de Crescimento Transformadores
11.
Neural Regen Res ; 16(3): 537-542, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32985484

RESUMO

Dexanabinol (HU-211) is an artificially synthesized cannabinoid derivative that exerts neuroprotective effects through anti-inflammatory and antioxidant effects. Curcumin exhibits antidepressant effects in the treatment of major depressive disorder. To investigate the antidepressant effects of solid lipid nanoparticles loaded with both curcumin and dexanabinol, and the underlying mechanisms associated with this combination, we established wild-type (CBR1+/+) and cannabinoid receptor 1 (CBR1) knockout (CBR1-/-) mouse models of major depressive disorder, through the intraperitoneal injection of corticosterone, for 3 successive days, followed by treatment with intraperitoneal injections of solid lipid nanoparticles loading with curcumin (20 mg/kg) and dexanabinol (0.85 mg/kg), for 2 successive days. Our results revealed that solid lipid nanoparticle loading with curcumin and dexanabinol increased the mRNA and protein expression levels of the mature neuronal markers neuronal nuclei, mitogen-activated protein 2, and neuron-specific beta-tubulin III, promoted the release of dopamine and norepinephrine, and increased the mRNA expression of CBR1 and the downstream genes Rasgef1c and Egr1, and simultaneously improved rat locomotor function. However, solid lipid nanoparticles loaded with curcumin and dexanabinol had no antidepressant effects on the CBR1-/- mouse models of major depressive disorder. This study was approved by the Institutional Ethics Committee of Tongji Hospital of Tongji University, China (approval No. 2017-DW-020) on May 24, 2017.

12.
J Cell Physiol ; 235(9): 6032-6042, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31989652

RESUMO

Activation of cannabinoid receptor type II (CB2R) by AM1241 has been demonstrated to protect dopaminergic neurons in Parkinson's disease (PD) animals. However, the specific mechanisms of the action of the CB2R agonist AM1241 for PD treatment have not been characterized. Wild-type (WT), CB1R knockout (CB1-KO), and CB2R knockout (CB2-KO) mice were exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 1 week to obtain a PD mouse model. The therapeutic effects of AM1241 were evaluated in each group. Behavioral tests, analysis of neurotransmitters, and immunofluorescence results demonstrated that AM1241 ameliorated PD in WT animals and CB1-KO animals. However, AM1241 did not ameliorate PD symptoms in CB2-KO mice. RNA-seq analysis identified the lncRNA Xist as an important regulator of the protective actions of AM1241. Specifically, AM1241 allowed WT and CB1-KO animals treated with MPTP to maintain normal expression of Xist, which affected the expression of miR-133b-3p and Pitx3. In vitro, overexpression of Xist or AM1241 protected neuronal cells from death induced by 6-hydroxydopamine and increased Pitx3 expression. The CB2 receptor agonist AM1241 alleviated PD via regulation of the Xist/miR-133b-3p/Pitx3 axis, and revealed a new approach for PD treatment.


Assuntos
Proteínas de Homeodomínio/genética , MicroRNAs/genética , Degeneração Neural/genética , Doença de Parkinson/genética , Receptor CB2 de Canabinoide/genética , Fatores de Transcrição/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Canabinoides/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural/patologia , Doença de Parkinson/patologia , RNA Longo não Codificante/genética , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
13.
Biomaterials ; 230: 119602, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735448

RESUMO

Recent studies indicate that exogenous chemotherapy agents can cross the placenta barrier and cause fetal toxicity, while there exists barely alternative therapy for pregnant cancer patients. Here, we show a robust protective effect of layered double hydroxide (LDH) against etoposide (VP16) induced in vitro mouse embryonic stem cells (mESCs) toxicity and in vivo embryo developmental disorders. The nano-composite system (L-V) abrogated the original VP16 generated mitochondrial mediated mESCs toxicity totally, surprisingly maintained the pluripotency without leukemia inhibitory factor (LIF) and prevented the down-regulation of ectoderm marker expression during spontaneous embryoid bodies differentiation. Fetal growth retardation, the related placenta and skeletal structural abnormalities and long-term toxicity in the offspring were generated when pregnant mice exposed to VP16, while these detrimental effects were abolished when substituted with L-V. The different uterine drug accumulation of VP16 and L-V contributed to partly cause for the functional variation. And further transcriptome analysis confirmed developmental related BMP4-SMAD6 signaling pathway is of crucial importance. Our study revealed the devastating effects of VP16 on embryonic development and the toxicity-relieve method using nano-carrier system, which will provide important guidance for clinical application of LDH as alternative therapeutic system with minimal side effects for pregnant women diagnosed with cancer.


Assuntos
Antineoplásicos , Hidróxidos , Preparações Farmacêuticas , Transdução de Sinais , Animais , Antineoplásicos/toxicidade , Diferenciação Celular , Embrião de Mamíferos/efeitos dos fármacos , Etoposídeo , Feminino , Humanos , Camundongos , Gravidez , Transdução de Sinais/efeitos dos fármacos
14.
Nanoscale ; 10(27): 13106-13121, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29961791

RESUMO

Glioblastoma (GBM) is the most malignant and lethal glioma in human brain tumors and contains self-renewing, tumorigenic glioma stem cells (GSCs) that contribute to tumor initiation, therapeutic resistance and further recurrence. In this study, we combined in vitro cellular efficacy with in vivo antitumor performance to evaluate the outcome of an etoposide (VP16) loaded layered double hydroxide (LDH) nanocomposite (L-V) on human GSCs. The effects on GSC proliferation and apoptosis showed that loading with LDH could significantly sensitize GSCs to VP16 and enhance the GSC elimination. Further qPCR and western blot assays demonstrated that L-V could effectively attenuate GSC related pluripotency gene expression and reduce the cancer stemness. An in vivo GSC xenograft mice model showed that L-V can overcome drug resistance, eradicate GSCs, sharply decrease the stemness and reverse the epithelial-mesenchymal transition (EMT). RNA-seq analysis elucidated that L-V plays a vital role by down-regulating the PI3K/AKt/mTOR expression and activating the Wnt/GSK3ß/ß-catenin signaling pathway, hence leading to GSC stemness loss and greatly enhancing the GSC targeting effect. Taken together, this study demonstrated the outstanding performance of L-V reversing the drug resistance of GSCs, thus providing a novel strategy for clinical translation application of nanomedicine in malignant glioma chemotherapy.


Assuntos
Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/administração & dosagem , Glioblastoma/tratamento farmacológico , Hidróxidos/química , Nanopartículas/química , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biomaterials ; 171: 1-11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29677519

RESUMO

Graphene oxide (GO), with good hydrophilicity and biocompatibility, is widely explored as a carrier for various factors in the field of stem cell differentiation. However, its function of sustaining the stemness of mouse embryonic stem cells (mESCs) and the underlying mechanisms of this process remains undiscovered. Herein, we explored the biofunction of GO on mESCs and revealed the involved signaling pathways and key gene. The alkaline phosphatase activity detection, pluripotency genes quantification and the teratomas formation in vivo confirmed that GO nanosheets could sustain the self-renewal ability of mESCs instead of influencing its pluripotency. The underlying signaling pathways were uncovered by RNA-seq that integrin signaling pathway was involved in the biofunction of GO on mESCs and Vinculin turned to be a key gene for the effect of GO. Further experiments confirmed that the downregulation of Vinculin influenced the fate of mESCs through decreasing the expression of MEK1. Altogether, the study demonstrated for the first time that GOs hold the potential in sustaining the self-renewal of mESCs and clarified the mechanism of this function, which make it play a new role in stem cell research and regenerative medicine.


Assuntos
Autorrenovação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Grafite/farmacologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Nanoestruturas/química , Vinculina/genética , Fosfatase Alcalina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos/citologia , Células Alimentadoras/citologia , Células Alimentadoras/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Integrinas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Vinculina/metabolismo
16.
Oncotarget ; 8(40): 67837-67850, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978077

RESUMO

The main pathological feature of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra. In this study, we investigated the role of cannabinoid receptor 2 (CB2R) agonist AM1241 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in a mouse model of PD. Upon treatment with AM1241, the decreased CB2R level in the PD mouse brain was reversed and the behavior score markedly elevated, accompanied with a dose-dependent increase of dopamine and serotonin. In addition, western blot assay and immunostaining results suggested that AM1241 significantly activated PI3K/Akt/MEK phosphorylation and increased the expression of Parkin and PINK1, both in the substantia nigra and hippocampus. The mRNA expression analysis further demonstrated that AM1241 increased expression of the CB2R and activated Parkin/PINK1 signaling pathways. Furthermore, the increased number of TH-positive cells in the substantia nigra indicated that AM1241 regenerated DA neurons in PD mice, and could therefore be a potential candidate for PD treatment. The clear co-localization of CB2R and DA neurons suggested that AM1241 targeted CB2R, thus also identifying a novel target for PD treatment. In conclusion, the selective CB2 agonist AM1241 has a significant therapeutic effect on PD mice and resulted in regeneration of DA neurons following MPTP-induced neurotoxicity. The possible mechanisms underlying the neurogenesis effect of AM1241 might be the induction of CB2R expression and an increase in phosphorylation of the PI3K/AKT signaling pathway.

17.
Acta Biomater ; 63: 163-180, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28923539

RESUMO

Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and is highly expressed in carcinoma, which make it an important target for tumor targeting therapy. Neuroblastoma is the main cause for cancer-related death in children. Like most solid tumors, it is also accompanied with the overexpression of VEGF. Doxorubicin Hydrochloride (DOX), a typical chemotherapeutic agent, exhibits efficient anticancer activities for various cancers. However, DOX, without targeting ability, usually causes severe damage to normal tissues. To overcome the shortages, we designed a novel nano-composite, which is Bevacizumab (Bev) modified SiO2@LDH nanoparticles (SiO2@LDH-Bev), loading with DOX to achieve targeting ability and curative efficiency. SiO2@LDH-DOX and SiO2@LDH-Bev-DOX nanoparticles were synthesized and the physicochemical properties were characterized by TEM detection, Zeta potential analysis, FTIR, Raman and XPS analysis. Then in vitro and in vivo anti-neuroblastoma efficiency, targeting ability and mechanisms of anti-carcinoma and anti-angiogenesis of SiO2@LDH-Bev-DOX were explored. Our results indicated that we obtained the core-shell structure SiO2@LDH-Bev with an average diameter of 253±10nm and the amount of conjugated Bev was 4.59±0.38µg/mg SiO2@LDH-Bev. SiO2@LDH-Bev-DOX could improve the cellular uptake and the targeting effect of DOX to brain and tumor, enhance the anti-neuroblastoma and anti-angiogenesis efficiency both in vitro and in vivo, and alleviate side effects of DOX sharply, especially hepatic injury. In addition, we also demonstrated that angiogenesis inhibitory effect was mediated by DOX and VEGF triggered signal pathways, including PI3K/Akt, Raf/MEK/ERK, and adhesion related pathways. In summary, SiO2@LDH-Bev could be a potential VEGF targeting nanocarrier applied in VEGF positive cancer therapy. STATEMENT OF SIGNIFICANCE: This paper explored that a novel core-shell structure nanomaterial SiO2@LDH and modified SiO2@LDH with Bevacizumab (Bev) to form a new tumor vasculature targeting nanocarrier SiO2@LDH-Bev as vector of DOX, which was not reported before. The results indicated that SiO2@LDH-Bev could improve the VEGF targeting ability, anti-neuroblastoma and anti-angiogenesis efficiency of DOX. At the same time, SiO2@LDH-Bev-DOX could erase the cardiac toxicity and hepatic injury coming from DOX. Tube formation showed SiO2@LDH-Bev-DOX had the strongest effect on inhibiting angiogenesis among all the four formulations. SiO2@LDH-Bev-DOX could downregulate expression of p-VEGFR and inhibit activation of the Raf/MEK/ERK, p38MAPK, PI3K/Akt and FAK signaling pathways to achieve the goal of anti-angiogenesis. This work provides a novel system for the safe and efficient use of Bev and DOX on Neuroblastoma and explores the mechanism of the function of nano carrier in cancer therapy both in vitro and in vivo.


Assuntos
Bevacizumab/uso terapêutico , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Hidróxidos/química , Neuroblastoma/tratamento farmacológico , Dióxido de Silício/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Bevacizumab/sangue , Bevacizumab/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Nanopartículas/química , Nanopartículas/ultraestrutura , Neovascularização Patológica/sangue , Neovascularização Patológica/tratamento farmacológico , Neuroblastoma/patologia , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Physiol Biochem ; 42(6): 2281-2294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848078

RESUMO

BACKGROUND/AIMS: This study investigated the underlying mechanisms of the antidepressant effects of curcumin and dexanabinol-loaded solid lipid nanoparticles in corticosterone-induced cell and mice depression models. METHODS: Curcumin and dexanabinol-loaded solid lipid nanoparticles (Cur/SLNs-HU-211) were synthesized via an emulsifcation and low-temperature solidification method. Antidepressant activities of nanoparticles in a corticosterone-induced major depression model were investigated by MTT assay, cellular uptake by flow cytometry, behaviour by Forced Swimming Test and rotarod test, neurotransmitters by High Performance Liquid Chromatography, Western blotting, qPCR and immunofluorescence. RESULTS: Treatment with Cur/SLNs-HU-211 induced greater dopamine (DA)/5-hydroxytryptamine (5-HT) release with reduced corticosterone-induced apoptotic cell death in PC12 cells. Additionally, in vivo Cur/SLNs-HU-211 significantly induced recovery from depressive behaviour with increased DA/5-HT levels, CB1 mRNA levels and CB1, p-MEK1 and p-ERK1/2 protein expression levels in the hippocampus and striatum. Cur/SLNs-HU-211 improved CB1 expression and inspired the proliferation of astrocytes in the hippocampus and striatum, exerted neuroprotective effects by preventing corticosterone -induced BDNF/NeuN expression reduction. CONCLUSION: Our study implies that Cur/SLNs-HU-211 may be a useful approach for treatment of major depression.


Assuntos
Antidepressivos/análise , Curcumina/química , Dronabinol/análogos & derivados , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Receptor CB1 de Canabinoide/metabolismo , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Corticosterona/toxicidade , Curcumina/farmacologia , Curcumina/uso terapêutico , Transtorno Depressivo Maior/induzido quimicamente , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Dronabinol/química , Dronabinol/farmacologia , Dronabinol/uso terapêutico , MAP Quinase Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células PC12 , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética
19.
Int J Nanomedicine ; 12: 167-178, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28053531

RESUMO

Curcumin (Cur) is a promising photosensitizer that could be used in photodynamic therapy. However, its poor solubility and hydrolytic instability limit its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) in order to improve its therapeutic activity. The Cur-loaded SLNs (Cur-SLNs) were prepared using an emulsification and low-temperature solidification method. The functions of Cur and Cur-SLNs were studied on the non-small cell lung cancer A549 cells for photodynamic therapy. The results revealed that Cur-SLNs induced ~2.27-fold toxicity higher than free Cur at a low concentration of 15 µM under light excitation, stocking more cell cycle at G2/M phase. Cur-SLNs could act as an efficient drug delivery system to increase the intracellular concentration of Cur and its accumulation in mitochondria; meanwhile, the hydrolytic stability of free Cur could be improved. Furthermore, Cur-SLNs exposed to 430 nm light could produce more reactive oxygen species to induce the disruption of mitochondrial membrane potential. Western blot analysis revealed that Cur-SLNs increased the expression of caspase-3, caspase-9 proteins and promoted the ratio of Bax/Bcl-2. Overall, the results from these studies demonstrated that the SLNs could enhance the phototoxic effects of Cur.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Lipídeos/química , Neoplasias Pulmonares/patologia , Nanopartículas/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Caspase 3/metabolismo , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina/administração & dosagem , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
20.
Adv Sci (Weinh) ; 3(11): 1600229, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27980999

RESUMO

Currently, nanoparticles have gained a great attention in the anti-tumor research area. However, to date, studies on the anti-metastasis action of core-shell SiO2@LDH (LDH: layered double hydroxide) nanoparticles remain untouched. Two emerging aspects considered are establishing research on the controlling delivery effect of SiO2@LDH combined with anti-cancer medicine from a new perspective. The fine properties synthetic SiO2@LDH-VP16 (VP16: etoposide) are practiced to exhibit the nanoparticle's suppression on migration and invasion of non-small cell lung cancer (NSCLC). Both in vitro and in vivo inspection shows that SiO2@LDH can help VP16 better function as an anti-metastasis agent. On the other hand, anti-angiogenic efficiency, co-localization, as well as western blot are investigated to explain the possible mechanism. A clear mergence of SiO2@LDH-VP16 and cytomembrane/microtubule may be observed from co-location images. Results offer evidence that SiO2@LDH-VP16 plays positions on cytomembrane and microtubules. It efficiently inhibits metastasis on NSCLC by reducing vascularization, and eliciting depression of the PI3K-AKT and FAK-Paxillin signaling pathways. SiO2@LDH-VP16, the overall particle morphology, and function on anti-metastasis and anti-angiogenic may be tuned to give new opportunities for novel strategies for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA