Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(6): 2182-2190, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36740923

RESUMO

BACKGROUND: As an important plant allelochemical, coumarin can effectively inhibit the germination of various seeds. However, little is known about the inhibition mechanism of coumarin on weed seed germination. Moreover, the herbicidal activity of coumarin is needed to be improved as a natural pesticide. RESULTS: Coumarin had the highest inhibition effect on the ryegrass (Lolium perenne) seed, where coumarin disturbed the hormone pathway by decreasing the content of gibberellic acid 3, resulting in the reduction of amylase activity and consumption of starch during the germination process of ryegrass seed. Moreover, coumarin induced decreased activity of catalase and subsequently led to the accumulation of hydrogen peroxide and malondialdehyde, causing oxidative stress during the germination process of ryegrass seed. Furthermore, to enhance the herbicidal activity of coumarin, carbon dots (CDs) modified with polyetherimide were prepared, characterized, and then combined with coumarin to form coumarin-carbon dots (Cm-CDs) nanocomposites. Compared with coumarin, Cm-CDs nanocomposites significantly increased the herbicidal activity of coumarin on ryegrass, which implies that Cm-CDs nanocomposites could be used as a potential formulation to improve the herbicidal activity of coumarin. CONCLUSION: This study not only reveals the mechanism of coumarin on ryegrass germination, but also develop Cm-CDs nanocomposites to enhance the herbicidal activity of coumarin. Our findings will stimulate the application of Cm-CDs nanomaterials as an effective and environmentally friendly formulation in agriculture. © 2023 Society of Chemical Industry.


Assuntos
Lolium , Nanocompostos , Germinação , Carbono/metabolismo , Carbono/farmacologia , Cumarínicos/farmacologia , Sementes
2.
Artigo em Inglês | MEDLINE | ID: mdl-30650669

RESUMO

The dissipation dynamics and residue of pyrazosulfuron-ethyl, bensulfuron-methyl, acetochlor, and butachlor in paddy fields at Good Agricultural Practices (GAP) condition were carefully investigated in this study. The four herbicides' residues were determined based on a quick, easy, cheap, rugged, safe (QuEChERS) method coupled with HPLC-MS/MS and GC-MS. The limit of detection (LOD) for pyrazosulfuron-ethyl, bensulfuron-methyl, acetochlor, and butachlor in all matrices ranged from 0.04⁻1.0 ng. The limit of quantification (LOQ) of the four herbicides ranged from 0.01⁻0.1 mg/kg. Moreover, the average recoveries of the four herbicides ranged from 78.9⁻108% with relative standard deviations (RSDs) less than 15% at three different fortified levels for different matrices. The dissipation results indicated that the average half-lives (t1/2) of the four herbicides in soil were in the range of 3.5⁻17.8 days, and more than 95% of the four herbicides dissipated within 5 days in water. Furthermore, the final residues of the four herbicides were all below the LOQ at harvest time. Such results highlight the dissipation dynamics and residue of the four herbicides in a rice cropping system and contribute to risk assessment as well as scientific guidance on the proper and safe application of herbicides in paddy fields.


Assuntos
Herbicidas/análise , Oryza , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Acetanilidas/análise , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Meia-Vida , Pirazóis/análise , Pirimidinas/análise , Compostos de Sulfonilureia/análise , Espectrometria de Massas em Tandem , Toluidinas/análise
3.
Pestic Biochem Physiol ; 148: 28-33, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891374

RESUMO

As a new acaricide, cyflumetofen can effectively control Tetranychus, Panonychus, as well as other phytophagous mites. But its risk and the way of genetic and resistant inheritance in mites are not clear. In this study, two cyflumetofen-resistant strains (CyR and YN-CyR) were selected for 104 and 12 generations, and developed 104.7-fold and 25.6-fold resistance, respectively. Three crossing groups (CyR_80 × SS, CyR_104 × SS, YN-CyR × SS) were conducted to explore the resistant inheritance of cyflumetofen in T. cinnabarinus changed along with resistant level or not. The results of reciprocal crosses and backcrosses revealed that the incomplete recessive and multiple genes trait involved in two resistant strains. The different stage of resistance also has a same genetic trait. A cross-resistance study revealed that there was no cross-resistance between cyflumetofen and other four acaricides including avermectin, fenpropathrin, propargite and bifenazate respectively, but the cross-resistance to pyridaben reached a high level with 63.8-fold, which indicates an underlying mechanism that can both mediate cyflumetofen- and pyridaben-resistance in T. cinnabarinus.


Assuntos
Acaricidas/farmacologia , Resistência a Inseticidas/genética , Propionatos/farmacologia , Tetranychidae/efeitos dos fármacos , Animais , Bioensaio , Cruzamentos Genéticos , Feminino , Genes de Insetos , Tetranychidae/genética
4.
Chirality ; 30(4): 420-431, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274232

RESUMO

The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum Rs were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA