Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Anal Methods ; 16(21): 3392-3412, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38752456

RESUMO

Cocculus orbiculatus (L.) DC. (C. orbiculatus) is a medicinal herb valued for its dried roots with anti-inflammatory, analgesic, diuretic, and other therapeutic properties. Despite its traditional applications, chemical investigations into C. orbiculatus remain limited, focusing predominantly on alkaloids and flavonoids. Furthermore, the therapeutic use of C. orbiculatus predominantly focuses on the roots, leaving the stems, a significant portion of the plant, underutilized. This study employed ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) with in-house and online databases for comprehensive identification of components in various plant parts. Subsequently, untargeted metabolomics was employed to analyze differences in components across different harvest periods and plant sections of C. orbiculatus, aiming to screen for distinct components in different parts of the plant. Finally, metabolomic analysis of the roots and stems, which contribute significantly to the plant's weight, was conducted using chemometrics, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and heatmaps. A total of 113 components, including alkaloids, flavonoids, and organic acids, were annotated across the root, stem, leaf, flower, and fruit, along with numerous previously unreported compounds. Metabolomic analyses revealed substantial differences in components between the root and stem compared to the leaf, flower, and fruit during the same harvest period. PLS-DA and OPLS-DA annotated 10 differentiating components (VIP > 1.5, P < 0.05, FC > 2 or FC < 0.67), with 5 unique to the root and stem, exhibiting lower mass spectrometric responses. This study provided the first characterization of 113 chemical constituents in different parts of C. orbiculatus, laying the groundwork for pharmacological research and advocating for the enhanced utilization of its stem.


Assuntos
Metabolômica , Raízes de Plantas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Raízes de Plantas/química , Flavonoides/análise , Alcaloides/análise , Alcaloides/química , Caules de Planta/química , Extratos Vegetais/química , Análise de Componente Principal
2.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637315

RESUMO

Seed deterioration during storage is a major problem in agricultural and forestry production and for germplasm conservation. Our previous studies have shown that a mitochondrial outer membrane protein VOLTAGE-DEPENDENT ANION CHANNEL (VDAC) is involved in programmed cell death (PCD)-like viability loss during the controlled deterioration treatment (CDT) of elm (Ulmus pumila L.) seeds, but its underlying mechanism remains unclear. In this study, we demonstrate that the oxidative modification of GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH) is functioned in the gate regulation of VDAC during the CDT of elm seeds. Through biochemical and cytological methods and observations of transgenic material [Arabidopsis (Arabidopsis thaliana), Nicotiana benthamiana, and yeast (Saccharomyces cerevisiae)], we demonstrate that cysteine S-glutathionylated UpGAPDH1 interacts with UpVDAC3 during seed aging, which leads to a mitochondrial permeability transition and aggravation of cell death, as indicated by the leakage of the mitochondrial pro-apoptotic factor cytochrome c and the emergence of apoptotic nucleus. Physiological assays and inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that GAPDH glutathionylation is mediated by increased glutathione, which might be caused by increases in the concentrations of free metals, especially Zn. Introduction of the Zn-specific chelator TPEN [(N, N, N', N'-Tetrakis (2-pyridylmethyl)ethylenediamine)] significantly delayed seed aging. We conclude that glutathionylated UpGAPDH1 interacts with UpVDAC3 and serves as a pro-apoptotic protein for VDAC-gating regulation and cell death initiation during seed aging.

3.
World J Gastrointest Oncol ; 16(2): 414-435, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425399

RESUMO

BACKGROUND: Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM: To identify potential DNA methylation markers specific to ADE and CRC. METHODS: Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS: Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION: Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.

4.
Zhen Ci Yan Jiu ; 49(2): 192-197, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413041

RESUMO

Neuroimaging technology provides objective and visualized research tool to study the mechanisms of acupuncture effects. Building on a systematic review of previous clinical studies on acupuncture treatment for functional dyspepsia using neuroimaging technology, this paper summarizes and synthesizes past researches from 4 aspects: acupoint-specific effects, factors influencing the effects, different physiological responses, and predictive factors for acupuncture efficacy. It suggests that acupuncture treatment for FD involves central integration with disease-targeted (acupuncture treatment can target and regulate abnormal brain functional activity patterns in patients with FD), meridian-specific (stimulation of specific acupuncture points along the stomach meridian can significantly regulate abnormal brain functional activity patterns in FD patients), and dynamic conditional features(the effects of acupuncture treatment for FD are influenced by multiple factors). Lastly, considering the current research status, this paper outlines prospects in terms of research subjects, influencing factors, and result validation, aiming to provide references for future in-depth research.


Assuntos
Terapia por Acupuntura , Dispepsia , Meridianos , Humanos , Dispepsia/diagnóstico por imagem , Dispepsia/terapia , Dispepsia/etiologia , Terapia por Acupuntura/métodos , Pontos de Acupuntura , Neuroimagem
5.
Microb Pathog ; 187: 106527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163490

RESUMO

Abnormal activation of macrophage and gut Bacteroides fragilis (BF) are the important induction factors in the occurrence of type 2 diabetes (T2D) and vascular complications. However, it remains unknown whether BF involves in macrophage polarization. In this study, we found that BF extracellular vesicles (EV) can be uptaken by macrophage. BF-EV promote macrophage M1/M2 polarization significantly, and increase Sting expression significantly. Bioinformatics analysis found that Sema7a is an important gene involving in macrophage polarization. The expression of Sema7a can be induced by BF-EV and can be inhibited after C-176 treated. The inhibition expression of Sema7a prevent BF-EV to induce macrophage polarization. Further analysis reveals that there is no direct interaction between Sting and Sema7a, but Sgpl1 can interact with Sting or Sema7a. BF-EV promote the expression of Sgpl1, which the phenomenon can be inhibited after C-176 treated. Importantly, overexpression of Sgpl1 reversed the effect of C-176 for Sema7a expression, while inhibit Sema7a expression has limitation influence for Sting and Sgpl1 expression. In conclusion, this study confirms that Sting-Sgpl1-Sema7a is a key mechanism by which BF-EV regulates macrophage polarization.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Humanos , Bacteroides fragilis , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Ativação de Macrófagos
6.
J Diabetes ; 16(6): e13514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38112268

RESUMO

BACKGROUND: Pravastatin is an oral lipid-lowering drug, commonly used by patients with diabetes that is positively correlated with the occurrence of vascular calcification (VC), but the mechanism is unclear. METHODS: In this study, 16S rRNA sequencing and qRT-PCR wereused to detect the differential gut bacteria. Metabolomics and ELISA were used to analyze the differential metabolites. qRT-PCR and western blotting (WB) were used to detect genes expression. Flow cytometry was used to analyze macrophage phenotype. Immunohistochemistry was used to analyze aortic calcification. RESULTS: We found that gut Bacteroides fragilis (BF) increased significantly in patients who took pravastatin or type 2 diabetes (T2D) mice treated with pravastatin. In vitro experiments showed that pravastatin had little effect on BF but significantly promoted BF proliferation in vivo. Further analysis showed that ArsR was an important gene for pravastatin to regulate the activation of BF, and overexpression of ArsR significantly promoted the secretion of 3,4,5-trimethoxycinnamic acid (TMCA). Importantly, pravastatin significantly promoted BF secretion of TMCA and significantly increased TMCA secretion in T2D patients or T2D mice. TMCA had little effect on vascular smooth muscle cell calcification but significantly promoted macrophage M1 polarization, which we had demonstrated that M1 macrophages promoted T2D VC. In vivo studies found that pravastatin significantly upregulated TMCA levels in the feces and serum of T2D mice transplanted with BF and promoted the macrophage M1 polarization in bone marrow and the osteoblastic differentiation of aortic cells. Similar results were obtained in T2D mice after intravenous infusion of TMCA. CONCLUSIONS: Promoting intestinal BF to secrete TMCA, which leads to macrophage M1 polarization, is an important mechanism by which pravastatin promotes calcification, and the result will be used for the optimization of clinical medication strategies of pravastatin supplying a theoretical basis and experimental basis.


Assuntos
Bacteroides fragilis , Diabetes Mellitus Tipo 2 , Macrófagos , Pravastatina , Calcificação Vascular , Pravastatina/farmacologia , Animais , Calcificação Vascular/metabolismo , Calcificação Vascular/etiologia , Calcificação Vascular/patologia , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos Endogâmicos C57BL , Feminino
7.
Front Med (Lausanne) ; 10: 1239902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937139

RESUMO

Background: The reasons for the recurrence of common bile duct stones (CBDS) in elderly patients after choledocholithotomy are still unclear. This study aims to establish a prediction model for CBDS recurrence by identifying risk factors. Methods: We conducted a retrospective analysis of 1804 elderly patients aged 65 years and above who were diagnosed to have CBDS and were admitted to Nanjing First Hospital between January 1, 2010, and January 1, 2021. According to inclusion and exclusion criteria, 706 patients were selected for the final analysis. The patients were assigned to two groups according to the presence or absence of CBDS recurrence, and their clinical data were then statistically analyzed. Subsequently, a prediction model and nomogram were developed, evaluating effectiveness using the concordance index (C-index). Results: Of the 706 elderly patients, 62 patients experienced CBDS recurrence after surgery, resulting in a recurrence rate of 8.8%. The multivariate Cox analysis showed that prior history of cholecystectomy (hazard ratio [HR] = 1.931, 95% confidence interval [CI]: 1.051-3.547, p = 0.034), white blood cell (WBC) count ≥11.0 × 109/L (HR = 2.923, 95% CI: 1.723-4.957, p < 0.001), preoperative total bilirubin (TBIL) level ≥ 36.5 mmol/L (HR = 2.172, 95% CI: 1.296-3.639, p = 0.003), number of stones ≥2 (HR = 2.093, 95% CI: 1.592-5.294, p = 0.001), maximum stone diameter ≥ 0.85 cm (HR = 1.940, 95% CI: 1.090-3.452, p = 0.024), and T-tube drainage (HR = 2.718, 95% CI: 1.230-6.010, p = 0.013) were independent risk factors of CBDS recurrence in elderly patients after choledocholithotomy. A postoperative CBDS recurrence prediction model was constructed with a C-index value of 0.758 (95% CI: 0.698-0.818) and internal validation value of 0.758 (95% CI: 0.641-0.875). Conclusion: A history of cholecystectomy, WBC count ≥11.0 × 109/L, preoperative TBIL level ≥ 36.5 mmol/L, number of stones ≥2, maximum stone diameter ≥ 0.85 cm, and T-tube drainage are the independent risk factors of CBDS recurrence after choledocholithotomy in elderly patients. Our developed prediction model for CBDS recurrence has good predictive ability and can help predict the prognosis of patients with CBDS.

8.
Cell Tissue Bank ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368142

RESUMO

Cerebrospinal fluid-contacting neurons (CSF-cNs) act crucial role in chemosensory and mechanosensory function in spinal cord. Recently, CSF-cNs were found to be an immature neuron and may be involved in spinal cord injury recovery. But how to culture it and explore its function in vitro are not reported in previous research. Here, we first reported culture and identification of CSF-cNs in vitro. We first established a protocol for in vitro culture of CSF-cNs from the cervical spinal cord of mice within 24 h after birth. Polycystic kidney disease 2-like 1 (PKD2L1)+ cells were isolated by fluorescence-activated cell sorting and expressed the neuron marker ß-tubulin III and CSF-cNs marker GABA. Intriguingly, PKD2L1+ cells formed neurosphere and expressed neural stem cell markers Nestin, Sox2 and GFAP. Thus, our research provided culture and isolation of CSF-cNs and this facilitate the investigation the CSF-cNs function in vitro.

9.
Eur J Neurosci ; 58(1): 2384-2405, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161514

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a leading cause of long-term neurological disability in neonates and adults. Despite emerging advances in supportive care, like the most effective approach, hypothermia, poor prognosis has still been present in current clinical treatment for HIE. Stem cell therapy has been adopted for treating cerebral ischemia in preclinical and clinical trials, displaying its promising therapeutic value. At present, reported treatments for stroke employed stem cells to replace the lost neurons and integrate them into the existing host circuitry, promoting the release of growth factors to support and stimulate endogenous repair processes and so on. In this review, a meaningful overview to numerous studies published up to now was presented by introducing the preclinical and clinical research status of stem cell therapy for cerebral ischemia and hypoxia, discussing potential therapeutic mechanisms of stem cell transplantation for curing HI-induced brain injury, summarizing a series of approaches for marking transplanted cells and existing imaging systems for stem cell labelling and in vivo tracking and expounding the endogenous regeneration capability of stem cells in the newborn brain when subjected to an HI insult. Additionally, it is promising to combine stem therapy with neuromodulation through specific regulation of neural circuits. The crucial neural circuits across different brain areas related to functional recovery are of great significance for the application of neuromodulation strategies after the occurrence of neonatal hypoxic-ischemic encephalopathy (NHIE).


Assuntos
Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Recém-Nascido , Humanos , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco , Hipóxia , Neurônios , Hipotermia Induzida/métodos
10.
Surg Endosc ; 37(6): 4737-4747, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890418

RESUMO

BACKGROUND: The natural course of gastric low-grade dysplasia (LGD) remains unclear, and there are inconsistent management recommendations among guidelines and consensus. OBJECTIVE: This study aimed to investigate the incidence of advanced neoplasia in patients with gastric LGD and identify the related risk factors. METHODS: Cases of biopsy demonstrated LGD (BD-LGD) at our center from 2010 to 2021 were reviewed retrospectively. Risk factors related to histological progression were identified, and outcomes of patients based on risk stratification were evaluated. RESULTS: Ninety-seven (23.0%) of 421 included BD-LGD lesions were diagnosed as advanced neoplasia. Among 409 superficial BD-LGD lesions, lesion in the upper third of the stomach, H. pylori infection, larger size, and narrow band imaging (NBI)-positive findings were independent risk factors of progression. NBI-positive lesions and NBI-negative lesions with or without other risk factors had 44.7%, 1.7%, and 0.0% risk of advanced neoplasia, respectively. Invisible lesions, visible lesions (VLs) without a clear margin, and VLs with a clear margin and size ≤ 10 mm, or > 10 mm had 4.8%, 7.9%, 16.7%, and 55.7% risk of advanced neoplasia, respectively. In addition, endoscopic resection decreased the risk of cancer (P < 0.001) and advanced neoplasia (P < 0.001) in patients with NBI-positive lesions, but not in NBI-negative patients. Similar results were found in patients with VLs with clear margin and size > 10 mm. Moreover, NBI-positive lesions had higher sensitivity and lower specificity for predicting advanced neoplasia than VLs with a clear margin and size > 10 mm determined by white-light endoscopy (97.6% vs. 62.7%, P < 0.001; and 63.0% vs. 85.6%, P < 0.001, respectively). CONCLUSION: Progression of superficial BD-LGD is associated with NBI-positive lesions, as well as with VLs with a clear margin (size > 10 mm) if NBI is unavailable, and selective resection of those lesions offers benefits for patients by decreasing the risk of advanced neoplasia.


Assuntos
Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Estudos Retrospectivos , Endoscopia/métodos , Fatores de Risco , Estômago/patologia , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/cirurgia , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Imagem de Banda Estreita
11.
Acta Pharmacol Sin ; 43(10): 2482-2494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35292770

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive impairment that currently is uncurable. Previous study shows that trilobatin (TLB), a naturally occurring food additive, exerts neuroprotective effect in experimental models of AD. In the present study we investigated the molecular mechanisms underlying the beneficial effect of TLB on experimental models of AD in vivo and in vitro. APP/PS1 transgenic mice were administered TLB (4, 8 mg· kg-1 ·d-1, i.g.) for 3 months; rats were subjected to ICV injection of Aß25-35, followed by administration of TLB (2.5, 5, 10 mg· kg-1 ·d-1, i.g.) for 14 days. We showed that TLB administration significantly and dose-dependently ameliorated the cognitive deficits in the two AD animal models, assessed in open field test, novel object recognition test, Y-maze test and Morris water maze test. Furthermore, TLB administration dose-dependently inhibited microglia and astrocyte activation in the hippocampus of APP/PS1 transgenic mice accompanied by decreased expression of high-mobility group box 1 (HMGB1), TLR4 and NF-κB. In Aß25-25-treated BV2 cells, TLB (12.5-50 µM) concentration-dependently increased the cell viability through inhibiting HMGB1/TLR4/NF-κB signaling pathway. HMGB1 overexpression abrogated the beneficial effects of TLB on BV2 cells after Aß25-35 insults. Molecular docking and surface plasmon resonance assay revealed that TLB directly bound to HMGB1 with a KD value of 8.541×10-4 M. Furthermore, we demonstrated that TLB inhibited Aß25-35-induced acetylation of HMGB1 through activating SIRT3/SOD2 signaling pathway, thereby restoring redox homeostasis and suppressing neuroinflammation. These results, for the first time, unravel a new property of TLB: rescuing cognitive impairment of AD via targeting HMGB1 and activating SIRT3/SOD2 signaling pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteína HMGB1 , Fármacos Neuroprotetores , Sirtuína 3 , Superóxido Dismutase , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides , Aditivos Alimentares/farmacologia , Aditivos Alimentares/uso terapêutico , Proteína HMGB1/metabolismo , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Polifenóis , Ratos , Transdução de Sinais , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/metabolismo
12.
Phytochem Anal ; 33(4): 619-634, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35238089

RESUMO

INTRODUCTION: Alkaloids and glycosides are the active ingredients of the herb Dendrobium nobile, which is used in traditional Chinese medicine. The pharmacological effects of alkaloids include neuroprotective effects and regulatory effects on glucose and lipid metabolism, while glycosides improve the immune system. The pharmacological activities of the above chemical components are significantly different. In practice, the stems of 3-year-old D. nobile are usually used as the main source of Dendrobii Caulis. However, it has not been reported whether this harvesting time is appropriate. OBJECTIVE: The aim of this study was to compare the chemical characteristics of D. nobile in different growth years (1-3 years). METHODS: In this study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) was employed to analyze the constituents of D. nobile. The relative abundance of each constituent was analyzed with multivariate statistical analyses to screen the characteristic constituents that contributed to the characterization and classification of D. nobile. Dendrobine, a component of D. nobile that is used for quality control according to the Chinese Pharmacopoeia, was assayed by gas chromatography. RESULTS: As a result, 34 characteristic constituents (VIP > 2) were identified or tentatively identified as alkaloids and glycosides based on MS/MS data. Moreover, the content of alkaloids decreased over time, whereas the content of glycosides showed the opposite trend. The absolute quantification of dendrobine was consistent with the metabolomics results. CONCLUSION: Our findings provide valuable information to optimize the harvest period and a reference for the clinical application of D. nobile.


Assuntos
Alcaloides , Dendrobium , Medicamentos de Ervas Chinesas , Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Dendrobium/química , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos , Espectrometria de Massas em Tandem/métodos
13.
Chem Biol Interact ; 351: 109744, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34774545

RESUMO

Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Carboxilesterase/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/química , Alanina/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Carboxilesterase/química , Catepsina A/química , Catepsina A/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Sinvastatina/farmacologia
14.
Nat Prod Res ; 36(21): 5393-5399, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34930072

RESUMO

Six dendrobine-type alkaloids were isolated from the tubes of Dendrobium nobile by silica gel, Sephadex LH-20 gel column chromatography, and preparative HPLC. Compound 1 is a new alkaloid containing a pair of amide tautomers, whereas compound 2 is a new dendrobine-type alkaloid. By using spectroscopic techniques including 1 D and 2 D NMR, the structures of compounds 1‒6 were identified as N-methoxylcarbonyldendrobine (1), dendronboic acid (2), dendrobine (3), 6-hydroxyldendrobine (4), dendrobine N-oxide (5), and denrine (6). The cytotoxic effects of the isolated compounds on two human tumour cell lines (HCT-116 and SW1990) were evaluated using MTT assay.


Assuntos
Alcaloides , Dendrobium , Humanos , Dendrobium/química , Alcaloides/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão
15.
Ibrain ; 8(3): 346-352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786747

RESUMO

The objective of this study was to examine whether ultrasound can examine the development of cerebral vascular structure and cerebral blood flow in Sprague-Dawley (SD) rats by ultrasound in a noninvasive manner, which provides a reference for ultrasound research of SD rats. Thirty-nine SD rats (7-16 days old) were divided into seven groups according to age, and the number of SD rats in each group was, respectively, 7, 17, 1, 3, 2, 8, and 1. Ultrasound was used to detect cerebral blood vessels, cerebrovascular flow velocity, and heart rate in SD rats in the sagittal and coronal positions, and images were obtained in B-mode ultrasound. The cerebral vascular structure of 39 SD rats (7-16 days) was dynamically observed under B-ultrasound. We found that the cerebral vascular structure of the rats aged 7-10 days was clear and detectable. Rats aged 11-16 days of cerebral vascular structures became thinner and undetectable. Quantitative analysis of cerebrovascular flow rate and heart rate in rats found that there was no significant difference in cerebrovascular blood flow rate and heart rate between 7 and 8 days. Ultrasound can also be used in rat animal studies, that is, the cerebral blood flow in rats of different ages can be monitored in real-time by ultrasound in a noninvasive way.

16.
Ibrain ; 8(2): 127-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786887

RESUMO

Huangqi Guizhi Wuwu Decoction (HGWD) has a definite effect on neuropathic pain (NP), whereas the specific mechanism has not been elucidated. The components and targets in HGWD were collected and identified through System Pharmacology Database (Traditional Chinese Medicine Database and Analysis Platform). Genecards and Online Mendelian Inheritance in Man databases were used to search for NP-related genes. The Venn diagram was drawn to get the intersection target. Cytoscape 3.8.0 software was used to construct the compound-disease-target-pathway networks. STRING database was applied to analyze protein-protein interaction of potential targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to identify the function of genes related to NP. Finally, molecular docking was performed to visualize the binding mode and affinity between proteins and active ingredients. According to the intersection target of the Venn diagram, the network graph is constructed by Cytoscape and the results show the five compounds, ß-sitosterol, (+)-catechin, quercetin, Stigmasterol, kaempferol, and 15 genes (CASP3, FOS, GSK3B, HSP90AA1, IKBKB, IL6, MAPK8, RELA, ICAM1, SELE, ELK1, HSPB1, PRKACA, PRKCA, RAF1) were highly correlated with NP. KEGG and GO of 15 genes results that TNF, IL-17 and MAPK signaling pathway were Significantly related to the pathological mechanism of NP. Molecular docking showed that core genes in this network were IL-6 (TNF and IL-17 signaling pathways), ICAM1 (TNF signaling pathway), and CASP3 (three signal pathways). This study found that the five active compounds, three core genes, and three signaling pathways may be the key to the treatment of NP by HGWD.

17.
J Anal Methods Chem ; 2021: 1957863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824876

RESUMO

Pyrrolizidine alkaloids (PAs) are considered as the major constituents that cause hepatoxicity in Senecio plants. PAs can be found in about 3%-5% of the world's flowering plants. Nowadays, the identification method of PAs by separation and preparation was too slow and lacked effective power. A rapid method to identify PAs in plants must be developed. Based on the fragmentation regularity, the hepatoxic PAs and nonhepatoxic PAs were characterized by liquid chromatography-mass spectrometry (LC-MS). The detailed structures of PAs in five Senecio plants were identified based on tandem mass spectrometry (MS/MS) spectrum and chemical research information. In the present study, some new fragmentation regularities of PAs have been found, such as product ions at m/z 122, m/z 140 and m/z 124, m/z 142, which have been discovered as the characteristic fragments of lactone and mono-esterase type of saturated PAs, respectively. Moreover, two product ions at m/z 120 and m/z 138 have been reported as the characteristic fragments of unsaturated PAs. Some of them were found in Senecio species for the first time, and some of them may be new nature product or even new compound. Finally, we classified these plants into five categories based on PAs which were identified in the present study; the result corresponded with the classification by morphology. In addition, we have found some constituents that have odd molecular weight number only in Senecio species but not in Ligularia species; the detailed structures of these non-PAs constituents need penetrating study. LC-MS was rapid and sensitive method for detecting and identifying PAs in plants. Pyrrolizidine alkaloids were the toxiferous constituent of Senecio plants. In this study, we found that PAs can be used as the characteristic constituent of Senecio species.

18.
Front Pharmacol ; 12: 655045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935768

RESUMO

Trilobatin (TLB) is an effective component from Lithocarpus polystachyrus Rehd. Our previous study revealed that TLB protected against oxidative injury in neuronal cells by AMPK/Nrf2/SIRT3 signaling pathway. However, whether TLB can delay aging remains still a mystery. Therefore, the present study was designed to investigate the possible longevity-enhancing effect of TLB, and further to explore its underlying mechanism in Caenorhabditis elegans (C. elegans). The results showed that TLB exerted beneficial effects on C. elegans, as evidenced by survival rate, body movement assay and pharynx-pumping assay. Furthermore, TLB not only significantly decreased ROS and MDA levels, but also increased anti-oxidant enzyme activities including CAT and SOD, as well as its subtypes SOD2 andSOD3, but not affect SOD1 activity, as evidenced by heat and oxidative stress resistance assays. Whereas, the anti-oxidative effects of TLB were almost abolished in SKN1, Sir2.3, and DAF16 mutant C. elegans. Moreover, TLB augmented the fluorescence intensity of DAF16: GFP, SKN1:GFP, GST4:GFP mutants, indicating that TLB increased the contents of SKN1, SIRT3 and DAF16 due to fluorescence intensity of these mutants, which were indicative of these proteins. In addition, TLB markedly increased the protein expressions of SKN1, SIRT3 and DAF16 as evidenced by ELISA assay. However, its longevity-enhancing effect were abolished in DAF16, Sir2.3, SKN1, SOD2, SOD3, and GST4 mutant C. elegans than those of non-TLB treated controls. In conclusion, TLB effectively prolongs lifespan of C. elegans, through regulating redox homeostasis, which is, at least partially, mediated by SKN1/SIRT3/DAF16 signaling pathway.

20.
BMC Gastroenterol ; 21(1): 114, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750308

RESUMO

BACKGROUND: Endoscopic resection has been used for high-grade intraepithelial neoplasia (HGIN) and superficial esophageal squamous cell carcinoma (ESCC) with limited risk of lymph node metastasis. However, some of these lesions cannot be accurately diagnosed based on forceps biopsy prior to treatment. In this study we aimed to investigate how to solve this histological discrepancy and avoid over- and under-treatment. METHODS: The medical records of patients with superficial esophageal squamous cell neoplasia who underwent endoscopic resection at our hospital from January 2012 to December 2019 were reviewed retrospectively. The histological discrepancy between the biopsy and resected specimens was calculated and its association with clinicopathological parameters was analyzed. RESULTS: A total of 137 lesions from 129 patients were included. The discrepancy rate between forceps biopsy and resected specimens was 45.3% (62/137). Histological discrepancy was associated with the histological category of the biopsy (p < 0.001). In addition, 17 of the 30 (56.7%) biopsies that was diagnosed as indefinite/negative for neoplasia or low-grade intraepithelial neoplasia were upgraded to HGIN or ESCC after resection. The upgrade was due to lesion size ≥ 10 mm (p = 0.002) and type B intrapapillary capillary loops (p < 0.001). Moreover, 34 of the 83 biopsies that were diagnosed with HGIN were upgraded to ESCC after resection, which was related to lesion size (p = 0.001), location (p = 0.018), and pink color sign (p = 0.002). CONCLUSIONS: Histological discrepancy between forceps biopsy and resected specimens is common in clinical practice. Recognizing the risk factors for each histological category of biopsy may reduce these discrepancies and improve clinical management.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biópsia , Células Epiteliais , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago/cirurgia , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA