Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exploration (Beijing) ; 4(2): 20230054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38855614

RESUMO

Traditional tumour-dynamic therapy still inevitably faces the critical challenge of limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascade-responsive dual cycling amplification of •SO4 -/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na2S2O8 nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetra-sulphide cleavage of nanoreactors to explosively release Na+/S2O8 2 - /Fe2+ and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO4 - (Fe2+-catalyzed S2O8 2 - oxidation), proton (•SO4 --catalyzed H2O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe3+ will be in turn recovered into Fe2+ by excessive EG to circularly amplify •SO4 -/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na+ overload and weaken the ROS-scavenging systems by GSH exhaustion to further amplify oxidative stress. Our yolk-shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.

2.
Small ; 20(36): e2310957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38698608

RESUMO

The efficacy of traditional radiotherapy (RT) has been severely limited by its significant side effects, as well as tumor hypoxia. Here, the nanoscale cerium (Ce)-based metaloxo clusters (Ce(IV)6)-porphyrin (meso-tetra (4-carboxyphenyl) porphyrin, TCPP) framework loaded with L-arginine (LA) (denoted as LA@Ce(IV)6-TCPP) is developed to serve as a multifarious radio enhancer to heighten X-ray absorption and energy transfer accompanied by O2/NO generation for hypoxia-improved RT-radiodynamic therapy (RDT) and gas therapy. Within tumor cells, LA@Ce(IV)6-TCPP will first react with endogenous H2O2 and inducible NO synthase (iNOS) to produce O2 and NO to respectively increase the oxygen supply and reduce oxygen consumption, thus alleviating tumor hypoxia. Then upon X-ray irradiation, LA@Ce(IV)6-TCPP can significantly enhance hydroxyl radical (•OH) generation from Ce(IV)6 metaloxo clusters for RT and synchronously facilitate singlet oxygen (1O2) generation from adjacently-coordinated TCPP for RDT. Moreover, both the •OH and 1O2 can further react with NO to generate more toxic peroxynitrite anions (ONOO-) to inhibit tumor growth for gas therapy. Benefitting from the alleviation of tumor hypoxia and intensified RT-RDT synergized with gas therapy, LA@Ce(IV)6-TCPP elicited superior anticancer outcomes. This work provides an effective RT strategy by using low doses of X-rays to intensify tumor suppression yet reduce systemic toxicity.


Assuntos
Cério , Óxido Nítrico , Oxigênio , Cério/química , Oxigênio/química , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animais , Porfirinas/química , Porfirinas/farmacologia , Linhagem Celular Tumoral , Humanos , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Camundongos , Metais Terras Raras/química , Radioterapia/métodos , Gases/química , Arginina/química , Arginina/farmacologia
3.
Adv Sci (Weinh) ; 11(29): e2309992, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38774946

RESUMO

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.


Assuntos
Nanopartículas , Radioimunoterapia , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Camundongos , Feminino , Radioimunoterapia/métodos , Nanopartículas/química , Humanos , Modelos Animais de Doenças , Metais Terras Raras/química , Linhagem Celular Tumoral
4.
Adv Healthc Mater ; 13(11): e2303955, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38271271

RESUMO

Traditional chemotherapy has faced tough challenges of systemic toxicity, hypoxia resistance, and inadequacy of monotherapy. Developing the tumor-specific O2-supply-enhanced chemotherapy without toxic drugs while combing other precise treatments can substantially improve therapeutic efficacy. Herein, a CeO2-enriched CuO nanozyme with O2 supply and oxidative stress amplification for tumor-specific disulfiram (DSF) chemotherapy and intensified chemodynamic therapy by synergistic in situ "nontoxicity-toxicity" activation is developed. Notably, CeO2 can not only act as a morphological "regulator," but also serve as a cascaded enzyme-mimetic catalyst via tumor-microenvironment-responsive cascaded-logical programmable valence conversion. Once internalized inside tumor cells, the nanozyme can be degraded by lysosomal acidity to release nontoxic DSF and Cu2+, which can trigger in situ "Cu2+-DSF" chelation, generating a highly toxic Cu(DTC)2 for in situ chemotherapy. Moreover, the enriched CeO2 with catalase-mimetic activity can decompose the endogenous H2O2 into O2, which can relieve the hypoxia to enhance the chemotherapeutic efficacy. Furthermore, the simultaneously generated Ce3+ can exert peroxidase-mimetic activity to catalyze H2O2 into hydroxyl radicals (•OH) for chemodynamic therapy. This Fenton-like chemistry is accompanied by the regeneration of Ce4+, which can deplete the intracellular overproduced GSH to amplify the oxidative stress. Therefore, this nanozyme can provide an alternative to precise cancer treatment.


Assuntos
Cério , Cobre , Dissulfiram , Estresse Oxidativo , Microambiente Tumoral , Dissulfiram/farmacologia , Dissulfiram/química , Cério/química , Cério/farmacologia , Cobre/química , Microambiente Tumoral/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Oxigênio/química , Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo
5.
MedComm (2020) ; 3(3): e136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35711853

RESUMO

The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA