Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 12: e17972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39285919

RESUMO

The Xiao Jiang River, as a crucial element of ecological restoration in the upper reaches of the Yangtze River, plays an indispensable role in agricultural water utilization and water ecology within its watersheds. The water quality status of the Xiao Jiang River not only impacts local water-ecological equilibrium and economic benefits but also holds paramount importance for sustaining ecosystem health in the Yangtze River basin. Plankton surveys and environmental physicochemical detection were conducted in the major channel region of the Xiao Jiang River in dry and wet periods in 2022 to better understand the diversity of eukaryotic plankton and its community structure characteristics. Environmental DNA is an emerging method that combines traditional ecology with second-generation sequencing technology. It can detect species from a single sample that are difficult to find by traditional microscopy, making the results of plankton diversity studies more comprehensive. For the first time, environmental DNA was used to investigate eukaryotic plankton in the Xiao Jiang River . The results showed that a total of 881 species of plankton from 592 genera in 17 phyla were observed. During the dry period, 480 species belonging to 384 genera within17 phyla were detected, while, during the wet period, a total of 805 species belonging to 463 genera within 17 phyla were recorded. The phylum Ciliophora dominated the zooplankton, while the phylum Chlorophyta and Bacillariophyta dominated the phytoplankton. The presence of these dominant species indicate that the water quality conditions in the study area are oligotrophic and mesotrophic. Principal coordinate analysis and difference test showed that the number of plankton ASVs, abundance, species richness, dominating species, and diversity indices differed between the dry and wet periods. Spearman correlation analysis and redundancy analysis (RDA) of relative abundance data with environmental physicochemical factors revealed that water temperature (WT), dissolved oxygen (DO), potential of hydrogenacidity (pH), ammonia nitrogen (NH3-N), total nitrogen (TN), electrical conductivity (EC) and the determination of redox potential (ORP) were the main environmental physicochemical factors impacting the plankton community structure. The results of this study can serve as a provide data reference at the plankton level for water pollution management in the Xiao Jiang River, and they are extremely important for river ecological restoration and biodiversity recovery in the Yangtze River basin.


Assuntos
Biodiversidade , Plâncton , Rios , China , Rios/química , Plâncton/genética , Plâncton/classificação , Monitoramento Ambiental/métodos , Ecossistema , Eucariotos/genética , Eucariotos/classificação , Eucariotos/isolamento & purificação , DNA Ambiental/genética , DNA Ambiental/análise , Qualidade da Água
2.
J Phys Chem A ; 127(48): 10243-10252, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37983021

RESUMO

The interaction of fuel with NOx chemistry is important for the construction of the reaction mechanism and engine application. In this work, the reaction pathways of nC5H12 + NO2 were studied by high-level electronic structure calculations (DLPNO-CCSD(T)-F12/cc-pVTZ-F12//B2PLYPD3/cc-pVTZ). The rate constants were calculated by using the multistructural canonical transition-state theory with the Eckart tunneling method (TST/MS-T/ET). The studied condition is in a wide temperature range of 298-2400 K. The influence of MS-T anharmonicity and tunneling effect will be clarified for these site-specific H-abstraction pathways. The result reflects the large deviation introduced by the treatment of MS-T anharmonicity, especially at a high temperature. For the same type of reactions, the rate constants of H-abstraction both occurring at the secondary carbon are not almost identical. The branching ratios show that abstraction from the secondary site forming cis-HONO (R2c) contributes 36-78% to nC5H12 consumption in the temperature range of 298-2400 K. The current results show that the multistructural torsional anharmonicity has a crucial influence on the accurate estimation of branching ratios.

3.
Proc Natl Acad Sci U S A ; 120(10): e2220131120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848575

RESUMO

Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.

4.
J Am Chem Soc ; 144(37): 16984-16995, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069709

RESUMO

Ketohydroperoxides (KHPs) are oxygenates with carbonyl and hydroperoxy functional groups, and they are generated under combustion and atmospheric conditions. Their fate is crucial for secondary organic aerosol formation in the troposphere and for the ignition processes of biofuels in advanced combustion engines. We investigated the thermodynamics and kinetics of nine hydrogen abstraction reactions from four ether KHPs by OH. We find that the rate constants are strongly affected by entropic effects whose estimation requires a consideration of higher-energy conformers of the transition state. A density functional was selected for these reactions by comparison to coupled cluster calculations, and it was used for calculations by multistructural canonical transition-state theory with multidimensional tunneling over the temperature range of 200-2000 K. We find that the effect of multistructural torsional anharmonicity is very large and quite different for the various ether KHP reactions. A leading cause of the structural dependence is the dominance of entropic factors due to the lack of hydrogen bonding in some of the higher-energy conformers of the transition states. Four of the reactions involve abstraction from the α-carbon (the carbon vicinal to the hydroperoxide group); they exhibit nonmonotonic temperature dependence with complex fuel-specific dependence. The rate constants for abstraction from a non-α-carbon of a given KHP can be faster than the ones for abstraction from an α-carbon; in two cases, this is due to entropy, and in one case, the non-α-carbon abstraction has a lower energy barrier. Tunneling and recrossing effects are also found to be important.


Assuntos
Biocombustíveis , Peróxido de Hidrogênio , Carbono/química , Éteres , Hidrogênio/química , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA