Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 12(1): e8539, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127042

RESUMO

The natural regeneration of native broadleaved species underneath forest monoculture plantations is important to recover ecosystem functions and to mitigate adverse environmental effects. To understand how seed rain and soil seed bank facilitate natural regeneration, we surveyed their density and composition in a monoculture Chinese fir plantation, a mixed Chinese fir-broadleaf plantation, and an adjacent natural broadleaved forest for two years in southern China. Twenty-eight species (16 families) were in seed rain, and 45 species (27 families) were in soil seed bank. Seed rain density did not differ significantly across stands; however, the number of taxa in seed rain was highest in the mixed plantation and lowest in the natural forest. Seed bank density was significantly higher in the mixed plantation than in the other stands (p < .05). The Sørensen similarity index of species composition between seed sources and aboveground vegetation were relatively low (<.50). The seeds of various native tree species were common in the seed bank of the plantations, indicating that seed rain and seed bank played an important role in native forest regeneration. We recommend that managers interested in sustainable forestry should take into consideration the presence of existing soil seed bank when developing their management strategies. In addition, with regard to forest regeneration process, we also recommend supplementation of the species composition by direct seeding or planting of desired species.

2.
Sci Total Environ ; 762: 143153, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33158518

RESUMO

Canopy litter is an important component of coarse woody debris (CWD), which affects nutrient and carbon cycling in forest ecosystems. For marcescent plant species (characterized by dead branches and leaves remaining in the canopy for several years before abscission), nutrient resorption from senescing leaves is an important nutrient conservation strategy. However, investigating the ecological function of canopy litter is challenging due to its limited accessibility and also the heterogeneous canopy microclimate in terms of light transmission, temperature and moisture. We studied the spatiotemporal distribution of canopy litter mass and seasonal dynamics of leaf nutrients and nutrient resorption during senescence in the canopy along a chronosequence of Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantations in southeast China. The dry mass weight of dead branches and dead leaves in the canopy significantly increased with stand stage (14.6, 14.2, and 17.4 t ha-1 for young, middle-aged, and mature stands respectively), accounting for high proportions of total aboveground litter of 85.7%, 79.1% and 80.0%, respectively, along with annual litterfall production (2.44, 3.75, and 4.34 t ha-1, respectively). The canopy height distribution of dead branches and leaves also increased with stand age, ranging from 0 to 4 m in young stands, 3-8 m in middle-aged stands, to 4-10 m in mature stands. The seasonal pattern of canopy litter mass was the inverse of litterfall production: canopy litter mass peaked, while litterfall production was lowest in winter. Mean N, P, K, and Mg nutrient resorption efficiencies across stands at each stage were 53.8-58.9%, 64.0-68.9%, 85.0-90.2%, and 46.5-56.6%, respectively, while Ca was not retranslocated from senescing leaves. In summary, Chinese fir plantations retain large amounts of dead branches and leaves in the canopy from which at least ~50% of the nutrients N, P, K and Mg are recycled, representing an important nutrient conservation strategy that has evolved to adapt to nutrient-limited habitats. Canopy litter therefore plays an important role in these forest plantation ecosystems and should be protected instead of being removed from the canopy to the forest floor.


Assuntos
Cunninghamia , China , Ecossistema , Nitrogênio/análise , Nutrientes , Folhas de Planta/química , Solo , Árvores
3.
Environ Sci Pollut Res Int ; 23(23): 24135-24150, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27640061

RESUMO

Sustainable forestry requires adopting more ecosystem-informed perspectives. Tree thinning improves forest productivity by encouraging the development of the understory, which in turn improves species diversity and nutrient cycling, thereby altering the ecophysiological environment of the stand. This study aimed to quantify tree growth, understory vegetation, and soil quality of 9- and 16-year-old Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in South China, 1-7 years after pre-commercial thinning. The quadratic mean diameter (QMD) and individual tree volume were greatly increased and compensated for the reduced stand yield in thinned stands. In 2011, the stand volume in unthinned and thinned stands were 276.33 and 226.46 and 251.30 and 243.64 m3 ha-1, respectively, for young and middle stage. Therefore, we predicted that over time, the stand volume in thinned stands should exceed that in unthinned stands. The composition, diversity, and biomass of understory vegetation of the plantation monocultures significantly increased after thinning. The effects of thinning management on understory development were dynamic and apparent within 1-2 years post-thinning. Some light-demanding plant species such as Styrax faberi, Callicarpa formosana, Lophatherum gracile, and Gahnia tristis emerged in the shrub and herb layer and became dominant with the larger gaps in the canopy in thinned stands. The trigger effects of thinning management on understory and tree growth were more pronounced in the young stage. The beneficial effects on soil physical and chemical properties were measurable at later stages (7 years after thinning). The strong positive relationship between understory biomass and volume increment (at the tree and stand levels) indicated that understory improvement after thinning did not restrict productivity within Chinese fir stands but rather, benefited soil water content and nutrient status and promoted tree growth.


Assuntos
Biomassa , Conservação dos Recursos Naturais/métodos , Cunninghamia/fisiologia , Florestas , Solo/química , China
4.
Ying Yong Sheng Tai Xue Bao ; 25(1): 12-8, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24765836

RESUMO

Based on the comparison between reforested 19-year-old Mytilaria laosensis and Cunninghamia lanceolata plantations on cut-over land of C. lanceolata, effects of tree species transfer on soil dissolved organic matter were investigated. Cold water, hot water and 2 mol x L(-1) KCl solution were used to extract soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 0-5, 5-10 and 10-20 cm soil layers. In M. laosensis plantaion, the concentrations of soil DOC extracted by cold water, hot water and 2 mol L(-1) KCl solutions were significantly higher than that in C. lanceolata plantation. In the 0-5 and 5-10 cm layers, the concentrations of soil DON extracted by cold water and hot water in M. laosensis plantation were significantly higher than that in C. lanceolata plantation. The extracted efficiencies for DOC and DON were both in order of KCl solution > hot water > cold water. In the 0-5 cm layers, soil microbial biomass carbon (MBC) under M. laosensis was averagely 76.3% greater than under C. lanceolata. Correlation analysis showed that there were significant positive relationships between hot water extractable organic matter and soil MBC. Differences in the sizes of soil DOC and DON pools between the M. laosensis and C. lanceolata forests might be attributed to the quality and quantity of organic matter input. The transfer from C. lanceolata to M. laosensis could improve soil fertility in the plantation.


Assuntos
Cunninghamia , Hamamelidaceae , Compostos Orgânicos/análise , Solo/química , Biomassa , Carbono/análise , Florestas , Nitrogênio/análise , Microbiologia do Solo , Árvores
5.
Ying Yong Sheng Tai Xue Bao ; 24(2): 345-50, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23705377

RESUMO

A comparative study was conducted on the soil C and N pools in a 19-year-old broadleaf plantation and a Chinese fir (Cunninghamia lanceolata) plantation in subtropical China, aimed to understand the effects of tree species on the soil C and N pools. In the broadleaf plantation, the C and N stocks in 0-40 cm soil layer were 99.41 Mg.hm-2 and 6. 18 Mg.hm-2, being 33.1 % and 22. 6 % larger than those in Chinese fir plantation, respectively. The standing biomass and the C and N stocks of forest floor in the broadleaf plantation were 1.60, 1.49, and 1.52 times of those in Chinese fir plantation, respectively, and the differences were statistically significant. There was a significant negative relationship between the forest floor C/N ratio and the soil C and N stocks. In the broadleaf plantation, the fine root biomass in 0-80 cm soil layer was 1.28 times of that in the Chinese fir plantation, and the fine root biomass in 0-10 cm soil layer accounted for 48. 2 % of the total fine root biomass. The C and N stocks in the fine roots in the broadleaf plantation were also higher than those in the Chinese fir plantation. In 0-10 cm soil layer, its C stock had a significant positive relationship with the fine root C stock. It was suggested that as compared with Chinese fir plantation, the soil in broadleaf plantation had a greater potential to accumulate organic carbon.


Assuntos
Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Nitrogênio/análise , Solo/química , Árvores/crescimento & desenvolvimento , China , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA