Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(2): e0098321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668724

RESUMO

Distinct but related species of elephant endotheliotropic herpesviruses (EEHVs) circulate within Asian and African elephant populations. Primary infection with EEHVs endemic among Asian elephants can cause clinical illness and lethal EEHV hemorrhagic disease (EEHV-HD). The degree to which this occurs among African elephants has not been fully established. Recent cases of EEHV-HD caused by the EEHV3 species in African elephants housed in North American zoos has heightened concern about the susceptibility of this elephant species to EEHV-HD. In this study, we utilize the luciferase immunoprecipitation system (LIPS) to generate a serological assay specific for EEHV3 in African elephants by detecting antibodies against the EEHV3 E34 protein. The results showed that the majority of tested elephants from four separate and genetically unrelated herds, including five elephants that survived clinical illness associated with EEHV3, were positive for prior infection with EEHV3. However, African elephants who succumbed to EEHV3-HD were seronegative for EEHV3 prior to lethal infection. This supports the hypothesis that fatal EEHV-HD caused by EEHV3 is associated with primary infection rather than reactivation of latent virus. Lastly, we observed that African elephants, like Asian elephants, acquire abundant anti-EEHV antibodies prenatally and that anti-EEHV3 specific antibodies were either never detected or declined to undetectable levels in those animals that died from lethal disease following EEHV3 infection. IMPORTANCE Prior to 2019, only five cases of clinical disease from EEHV infection among African elephants had been documented. Since 2019, there have been at least seven EEHV-HD cases in North American zoos, resulting in three fatalities, all associated with EEHV3. Evidence is accumulating to suggest that EEHV-associated clinical illness and death among Asian elephants is due to primary infection and may be associated with waning anti-EEHV antibody levels in young elephants. The development of the EEHV3 serological test described in this study enabled us to confirm that similar dynamics may be contributing to EEHV-HD in African elephants. The ability to screen for EEHV immune status in African elephant calves will have a major impact on managing captive African elephant herds and will provide new tools for investigating and understanding EEHV in wild populations.


Assuntos
Elefantes/virologia , Transtornos Hemorrágicos/veterinária , Herpesvirus Equídeo 3/imunologia , Zoonoses Virais/diagnóstico , Zoonoses Virais/mortalidade , Animais , Animais de Zoológico/virologia , Anticorpos Antivirais/sangue , Feminino , Transtornos Hemorrágicos/diagnóstico , Transtornos Hemorrágicos/virologia , Herpesvirus Equídeo 3/patogenicidade , Masculino , Testes Sorológicos , Zoonoses Virais/patologia
2.
mSphere ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340695

RESUMO

A novel group of mammalian DNA viruses called elephant endotheliotropic herpesviruses (EEHVs) belonging to the Proboscivirus genus has been associated with nearly 100 cases of highly lethal acute hemorrhagic disease in young Asian elephants worldwide. The complete 180-kb genomes of prototype strains from three AT-rich branch viruses, EEHV1A, EEHV1B, and EEHV5, have been published. However, less than 6 kb of DNA sequence each from EEHV3, EEHV4, and EEHV7 showed them to be a hugely diverged second major branch with GC-rich characteristics. Here, we determined the complete 206-kb genome of EEHV4(Baylor) directly from trunk wash DNA by next-generation sequencing and de novo assembly procedures. Among a total of 119 genes with an overall colinear organization similar to those of the AT-rich EEHVs, major features of EEHV4 include a family of 26 paralogous 7xTM and vGPCR-like genes plus 25 novel or missing genes. The genome also contains an unusual distribution of tracts of 5 to 11 successive A or T nucleotides in intergenic domains between the mostly much higher GC content protein coding regions. Furthermore, an extremely high GC-rich bias in the third wobble position of codons clearly delineates the coding regions for many but not all proteins. There are also two novel captured cellular genes, including a C-type lectin (vECTL) and an O-linked acetylglucosamine transferase (vOGT), as well as an unusually large and complex Ori-Lyt dyad symmetry domain. Finally, 30 kb from a second strain proved to include three small chimeric domains, indicating the existence of distinct EEHV4A and EEHV4B subtypes. IMPORTANCE Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect both Asian and African elephants, but lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. Milder disease caused by EEHV5 or EEHV4 is being increasingly recognized as well, but little is known about the latter, which is estimated to have diverged at least 35 million years ago from the others within a distinctive GC-rich branch of the Proboscivirus genus. Here, we have determined the complete genomic DNA sequence of a strain of EEHV4 obtained from a trunk wash sample collected from a surviving Asian elephant calf undergoing asymptomatic shedding during convalescence after an acute hemorrhagic disease episode. This represents the first example from among the three known GC-rich branch Proboscivirus species to be assembled and fully annotated. Several distinctive features of EEHV4 compared to AT-rich branch genomes are described.

3.
mSphere ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340696

RESUMO

Nearly 100 cases of lethal acute hemorrhagic disease in young Asian elephants have been reported worldwide. All tested cases contained high levels of elephant endotheliotropic herpesvirus (EEHV) DNA in pathological blood or tissue samples. Seven known major types of EEHVs have been partially characterized and shown to all belong to the novel Proboscivirus genus. However, the recently determined 206-kb EEHV4 genome proved to represent the prototype of a GC-rich branch virus that is very distinct from the previously published 180-kb EEHV1A, EEHV1B, and EEHV5A genomes, which all fall within an alternative AT-rich branch. Although EEHV4 retains the large family of 7xTM and vGPCR-like genes, six are unique to either just one or the other branch. While both branches display a highly enriched distribution of A and T tracts in intergenic domains, they are generally much larger within the GC-rich branch. Both branches retain the vGCNT1 acetylglucosamine transferase and at least one vOX-2 gene, but the two branches differ by 25 genes overall, with the AT-rich branch encoding a fucosyl transferase (vFUT9) plus two or three more vOX2 proteins and an immunoglobulin-like gene family that are all absent from the GC-rich branch. Several envelope glycoproteins retain only 15 to 20% protein identity or less across the two branches. Finally, the two plausible predicted transcriptional regulatory proteins display no homology at all to those in the alpha-, beta-, or gammaherpesvirus subfamilies. These results reinforce our previous proposal that the probosciviruses should be designated a new subfamily of mammalian herpesviruses. IMPORTANCE Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect either Asian or African elephants, but the highly lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. In the accompanying paper [P. D. Ling et al., mSphere 1(3):e00081-15, 10.1128/mSphere.00081-15], we report the complete 206-kb genome of EEHV4, the third different species causing disease in Asian elephants and the first example of a GC-rich branch proboscivirus. To gain insights into the nature and differential properties of these two very anciently diverged lineages of elephant herpesviruses, we describe here several additional unusual features found in the complete GC-rich genome of EEHV4 with particular emphasis on patterns of divergence as well as common unique features that are distinct from those of all other herpesviruses, such as the enlarged AT-rich intergenic domains and gene families, including the large number of vGPCR-like proteins.

4.
J Gen Virol ; 96(Pt 7): 1873-0, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26209537

RESUMO

The genome of the rat cytomegalovirus (RCMV) English isolate (MuHV-8) differs significantly from the RCMV Maastricht isolate (MuHV-2) and other cytomegaloviruses (CMVs) in its size, base composition and genomic content. Analysis of the RCMV-Berlin isolate, MuHV-8, revealed that the two MuHV-8 isolates are highly similar in genome size and content, indicating that the smaller genome size (202 946 bp) compared to other known CMVs was not the result of an accidental deletion during passage in tissue culture. Surprisingly, the proteins encoded in MuHV-8 shared more overall similarity with their orthologues from mouse CMV (MuHV-1) compared to their orthologues in rat CMV (MuHV-2). Phylogenetic analyses of conserved viral genes showed that the two MuHV-8 isolates are from the same species and represent a unique clade that is distinct from other rodent CMVs.


Assuntos
Variação Genética , Muromegalovirus/classificação , Muromegalovirus/genética , Animais , Genoma Viral , Camundongos , Muromegalovirus/isolamento & purificação , Filogenia , Ratos , Homologia de Sequência , Sintenia
5.
J Virol ; 90(6): 3028-43, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719245

RESUMO

UNLABELLED: More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. IMPORTANCE: Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly involves a variety of strains of EEHV1, whose natural host has been unclear. Here, we carried out genotype analyses by partial PCR sequencing of necropsy tissue from five asymptomatic African elephants and identified multiple simultaneous infections by several different EEHV types, including high concentrations in lymphoid lung nodules. Overall, the results provide strong evidence that EEHV2, EEHV3, EEHV6, and EEHV7 represent natural ubiquitous infections in African elephants, whereas Asian elephants harbor EEHV1A, EEHV1B, EEHV4, and EEHV5. Although a single case of fatal cross-species infection by EEHV3 is known, the results do not support the previous concept that highly pathogenic EEHV1A crossed from African to Asian elephants in zoos.


Assuntos
Infecções Assintomáticas , Elefantes , Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Pulmão/virologia , Baço/virologia , Animais , DNA Viral/análise , DNA Viral/genética , Feminino , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Masculino , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
6.
J Virol ; 88(23): 13523-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231303

RESUMO

UNLABELLED: A family of novel endotheliotropic herpesviruses (EEHVs) assigned to the genus Proboscivirus have been identified as the cause of fatal hemorrhagic disease in 70 young Asian elephants worldwide. Although EEHV cannot be grown in cell culture, we have determined a total of 378 kb of viral genomic DNA sequence directly from clinical tissue samples from six lethal cases and two survivors. Overall, the data obtained encompass 57 genes, including orthologues of 32 core genes common to all herpesviruses, 14 genes found in some other herpesviruses, plus 10 novel genes, including a single large putative transcriptional regulatory protein (ORF-L). On the basis of differences in gene content and organization plus phylogenetic analyses of conserved core proteins that have just 20% to 50% or less identity to orthologues in other herpesviruses, we propose that EEHV1A, EEHV1B, and EEHV2 could be considered a new Deltaherpesvirinae subfamily of mammalian herpesviruses that evolved as an intermediate branch between the Betaherpesvirinae and Gammaherpesvirinae. Unlike cytomegaloviruses, EEHV genomes encode ribonucleotide kinase B subunit (RRB), thymidine kinase (TK), and UL9-like origin binding protein (OBP) proteins and have an alphaherpesvirus-like dyad symmetry Ori-Lyt domain. They also differ from all known betaherpesviruses by having a 40-kb large-scale inversion of core gene blocks I, II, and III. EEHV1 and EEHV2 DNA differ uniformly by more than 25%, but EEHV1 clusters into two major subgroups designated EEHV1A and EEHV1B with ancient partially chimeric features. Whereas large segments are nearly identical, three nonadjacent loci totaling 15 kb diverge by between 21 and 37%. One strain of EEHV1B analyzed is interpreted to be a modern partial recombinant with EEHV1A. IMPORTANCE: Asian elephants are an endangered species whose survival is under extreme pressure in wild range countries and whose captive breeding populations in zoos are not self-sustaining. In 1999, a novel class of herpesviruses called EEHVs was discovered. These viruses have caused a rapidly lethal hemorrhagic disease in 20% of all captive Asian elephant calves born in zoos in the United States and Europe since 1980. The disease is increasingly being recognized in Asian range countries as well. These viruses cannot be grown in cell culture, but by direct PCR DNA sequence analysis from segments totaling 15 to 30% of the genomes from blood or necropsy tissue from eight different cases, we have determined that they fall into multiple types and chimeric subtypes of a novel Proboscivirus genus, and we propose that they should also be classified as the first examples of a new mammalian herpesvirus subfamily named the Deltaherpesvirinae.


Assuntos
Betaherpesvirinae/classificação , Betaherpesvirinae/isolamento & purificação , Variação Genética , Infecções por Herpesviridae/veterinária , Animais , Betaherpesvirinae/genética , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Elefantes , Infecções por Herpesviridae/virologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
7.
J Virol ; 88(23): 13547-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231309

RESUMO

UNLABELLED: The genomes of three types of novel endotheliotropic herpesviruses (elephant endotheliotropic herpesvirus 1A [EEHV1A], EEHV1B, and EEHV2) associated with lethal hemorrhagic disease in Asian elephants have been previously well characterized and assigned to a new Proboscivirus genus. Here we have generated 112 kb of DNA sequence data from segments of four more types of EEHV by direct targeted PCR from blood samples or necropsy tissue samples from six viremic elephants. Comparative phylogenetic analysis of nearly 30 protein-encoding genes of EEHV5 and EEHV6 show that they diverge uniformly by nearly 20% from their closest relatives, EEHV2 and EEHV1A, respectively, and are likely to have similar overall gene content and genome organization. In contrast, seven EEHV3 and EEHV4 genes analyzed differ from those of all other EEHVs by 37% and have a G+C content of 63% compared to just 42% for the others. Three strains of EEHV5 analyzed clustered into two partially chimeric subgroups EEHV5A and EEHV5B that diverge by 19% within three small noncontiguous segments totaling 6.2 kb. We conclude that all six EEHV types should be designated as independent species within a proposed new fourth Deltaherpesvirinae subfamily of mammalian herpesviruses. These virus types likely initially diverged close to 100 million years ago when the ancestors of modern elephants split from all other placental mammals and then evolved into two major branches with high- or low-G+C content about 35 million years ago. Later additional branching events subsequently generated three paired sister taxon lineages of which EEHV1 plus EEHV6, EEHV5 plus EEHV2, and EEHV4 plus EEHV3 may represent Asian and African elephant versions, respectively. IMPORTANCE: One of the factors threatening the long-term survival of endangered Asian elephants in both wild range countries and in captive breeding populations in zoos is a highly lethal hemorrhagic herpesvirus disease that has killed at least 70 young Asian elephants worldwide. The genomes of the first three types of EEHVs (or probosciviruses) identified have been partially characterized in the preceding accompanying paper (L. K. Richman, J.-C. Zong, E. M. Latimer, J. Lock, R. C. Fleischer, S. Y. Heaggans, and G. S. Hayward, J. Virol. 88:13523-13546, 2014, http://dx.doi.org/10.1128/JVI.01673-14). Here we have used PCR DNA sequence analysis from multiple segments of DNA amplified directly from blood or necropsy tissue samples of six more selected cases of hemorrhagic disease to partially characterize four other types of EEHVs from either Asian or African elephants. We propose that all six types and two chimeric subtypes of EEHV belong to multiple lineages of both AT-rich and GC-rich branches within a new subfamily to be named the Deltaherpesvirinae, which evolved separately from all other mammalian herpesviruses about100 million years ago.


Assuntos
Betaherpesvirinae/classificação , Betaherpesvirinae/isolamento & purificação , Sangue/virologia , Variação Genética , Infecções por Herpesviridae/veterinária , Animais , Composição de Bases , Betaherpesvirinae/genética , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Elefantes , Infecções por Herpesviridae/virologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
8.
Genome Announc ; 1(2): e0010613, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23580705

RESUMO

Elephant endotheliotropic herpesvirus 1A is a member of the Proboscivirus genus and is a major cause of fatal hemorrhagic disease in endangered juvenile Asian elephants worldwide. Here, we report the first complete genome sequence from this genus, obtained directly from necropsy DNA, in which 60 of the 115 predicted genes are not found in any known herpesvirus.

9.
J Wildl Dis ; 49(2): 381-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23568914

RESUMO

Up to 65% of deaths of young Asian elephants (Elephas maximus) between 3 mo and 15 yr of age in Europe and North America over the past 20 yr have been attributed to hemorrhagic disease associated with a novel DNA virus called elephant endotheliotropic herpesvirus (EEHV). To evaluate the potential role of EEHV in suspected cases of a similar lethal acute hemorrhagic disease occurring in southern India, we studied pathologic tissue samples collected from field necropsies. Nine cases among both orphaned camp and wild Asian elephants were identified by diagnostic PCR. These were subjected to detailed gene subtype DNA sequencing at multiple PCR loci, which revealed seven distinct strains of EEHV1A and one of EEHV1B. Two orphan calves that died within 3 days of one another at the same training camp had identical EEHV1A DNA sequences, indicating a common epidemiologic source. However, the high level of EEHV1 subtype genetic diversity found among the other Indian strains matches that among over 30 EEHV1 strains that have been evaluated from Europe and North America. These results argue against the previous suggestions that this is just a disease of captive elephants and that the EEHV1 virus has crossed recently from African elephant (Loxodonta africana) hosts to Asian elephants. Instead, both the virus and the disease are evidently widespread in Asia and, despite the disease severity, Asian elephants appear to be the ancient endogenous hosts of both EEHV1A and EEHV1B.


Assuntos
Elefantes/virologia , Infecções por Herpesviridae/veterinária , Herpesviridae/classificação , Herpesviridae/genética , Filogenia , Animais , Animais Selvagens/virologia , Feminino , Variação Genética , Infecções por Herpesviridae/epidemiologia , Índia , Masculino , Prevalência
10.
J Zoo Wildl Med ; 44(1): 136-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23505714

RESUMO

Elephant endotheliotropic herpesviruses (EEHVs) can cause acute hemorrhagic disease with high mortality rates in Asian elephants (Elephas maximus). Recently, a new EEHV type known as EEHV5 has been described, but its prevalence and clinical significance remain unknown. In this report, an outbreak of EEHV5 infection in a herd of captive Asian elephants in a zoo was characterized. In February 2011, a 42-yr-old wild-born female Asian elephant presented with bilaterally swollen temporal glands, oral mucosal hyperemia, vesicles on the tongue, and generalized lethargy. The elephant had a leukopenia and thrombocytopenia. She was treated with flunixin meglumine, famciclovir, and fluids. Clinical signs of illness resolved gradually over 2 wk, and the white blood cell count and platelets rebounded to higher-than-normal values. EEHV5 viremia was detectable starting 1 wk before presentation and peaked at the onset of clinical illness. EEHV5 shedding in trunk secretions peaked after viremia resolved and continued for more than 2 mo. EEHV5 trunk shedding from a female herd mate without any detectable viremia was detected prior to onset of clinical disease in the 42-yr-old elephant, indicating reactivation rather than primary infection in this elephant. Subsequent EEHV5 viremia and trunk shedding was documented in the other five elephants in the herd, who remained asymptomatic, except for 1 day of temporal gland swelling in an otherwise-healthy 1-yr-old calf. Unexpectedly, the two elephants most recently introduced into the herd 40 mo previously shed a distinctive EEHV5 strain from that seen in the other five elephants. This is the first report to document the kinetics of EEHV5 infection in captive Asian elephants and to provide evidence that this virus can cause illness in some animals.


Assuntos
Elefantes , Infecções por Herpesviridae/veterinária , Herpesviridae/classificação , Doenças da Boca/virologia , Animais , Animais de Zoológico , Sequência de Bases , DNA Viral/genética , Feminino , Infecções por Herpesviridae/virologia , Masculino , Dados de Sequência Molecular , Viremia , Eliminação de Partículas Virais
11.
Vet Microbiol ; 147(1-2): 28-41, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20579821

RESUMO

Systemic infections with elephant endotheliotropic herpesviruses (EEHV) cause a rapid onset acute hemorrhagic disease with an 85% mortality rate. More than 60 cases have been confirmed worldwide occurring predominantly in juvenile Asian elephants. Originally, three virus types EEHV1A, EEHV1B and EEHV2 were identified, all members of the Proboscivirus genus within the Betaherpesvirinae. However, four elephant gammaherpesviruses (EGHV) have also been found by DNA PCR approaches in eye and genital secretions of asymptomatic animals, and two more versions of the probosciviruses, EEHV3 and EEHV4, were recently detected in acute hemorrhagic disease cases. To ask whether even more species of elephant herpesviruses may exist, we have developed several new diagnostic DNA PCR assays using multiple round primers in the DNA POL region. These have been used routinely for nearly three years to screen samples submitted to the Elephant Herpesvirus Laboratory for diagnosis of possible cases of EEHV disease in blood and necropsy tissue, as well as in biopsies of other suspicious lesions or growths. Several more cases of EEHV1-associated hemorrhagic disease were confirmed, but in addition, we describe here eleven examples of other known and novel herpesviruses detected and evaluated with these reagents. They include the prototypes of four new elephant herpesviruses, two more within the proboscivirus group EEHV5 and EEHV6, plus two more gammaherpesviruses EGHV3B and EGHV5. We also report initial semi-quantitative PCR assays demonstrating very high viral loads in the blood of the EEHV3 and EEHV4-associated hemorrhagic disease cases.


Assuntos
Betaherpesvirinae , Elefantes/virologia , Gammaherpesvirinae , Infecções por Herpesviridae/veterinária , Filogenia , Sequência de Aminoácidos , Animais , Betaherpesvirinae/classificação , Betaherpesvirinae/genética , Betaherpesvirinae/isolamento & purificação , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Feminino , Gammaherpesvirinae/classificação , Gammaherpesvirinae/genética , Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/virologia , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA