Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Commun Chem ; 6(1): 160, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507458

RESUMO

The polyhistidine (6XHis) motif is one of the most ubiquitous protein purification tags. The 6XHis motif enables the binding of tagged proteins to various metals, which can be advantageously used for purification with immobilized metal affinity chromatography. Despite its popularity, protein structures encompassing metal-bound 6XHis are rare. Here, we obtained a 2.5 Å resolution crystal structure of a single chain Fv antibody (scFv) bearing a C-terminal sortase motif, 6XHis and TwinStrep tags (LPETGHHHHHHWSHPQFEK[G3S]3WSHPQFEK). The structure, obtained in the presence of cobalt, reveals a unique tetramerization motif (TetrHis) stabilized by 8 Co2+ ions. The TetrHis motif contains four 6 residues-long ß-strands, and each metal center coordinates 3 to 5 residues, including all 6XHis histidines. By combining dynamic light scattering, small angle x-ray scattering and molecular dynamics simulations, We investigated the influence of Co2+ on the conformational dynamics of scFv 2A2, observing an open/close equilibrium of the monomer and the formation of cobalt-stabilized tetramers. By using a similar scFv design, we demonstrate the transferability of the tetramerization property. This novel metal-dependent tetramerization motif might be used as a fiducial marker for cryoelectron microscopy of scFv complexes, or even provide a starting point for designing metal-loaded biomaterials.

2.
Angew Chem Int Ed Engl ; 61(2): e202109967, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34668624

RESUMO

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.


Assuntos
Ceramidases
3.
Cell Rep Methods ; 1(6): None, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723237

RESUMO

Membrane proteins are central to many pathophysiological processes, yet remain very difficult to analyze structurally. Moreover, high-throughput structure-based drug discovery has not yet been exploited for membrane proteins because of lack of automation. Here, we present a facile and versatile platform for in meso membrane protein crystallization, enabling rapid atomic structure determination at both cryogenic and room temperatures. We apply this approach to human integral membrane proteins, which allowed us to identify different conformational states of intramembrane enzyme-product complexes and analyze by molecular dynamics simulations the structural dynamics of the ADIPOR2 integral membrane protein. Finally, we demonstrate an automated pipeline combining high-throughput microcrystal soaking, automated laser-based harvesting, and serial crystallography, enabling screening of small-molecule libraries with membrane protein crystals grown in meso. This approach brings needed automation to this important class of drug targets and enables high-throughput structure-based ligand discovery with membrane proteins.


Assuntos
Proteínas de Membrana , Bibliotecas de Moléculas Pequenas , Humanos , Proteínas de Membrana/química , Cristalografia por Raios X , Cristalização , Automação
4.
Mol Cell Endocrinol ; 491: 110397, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026477

RESUMO

In this review article, we summarize the current knowledge on a large and diverse superfamily of seven-pass transmembrane proteins functionally independent from the GPCR superfamily. We include the newest research findings about their physiological roles and their mechanism of action. In particular, we concentrate on the structural basis for the newly discovered amide hydrolase activity, with a focus on adiponectin receptors for which structures are available. Finally, we discuss the remaining challenges in understanding the activation and signaling of these intramembrane proteins and suggest how regulation of the amide hydrolase activity may help in development of new therapeutic agents.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Adiponectina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Amidoidrolases/química , Sequência de Aminoácidos , Animais , Humanos , Proteínas de Membrana/química , Receptores de Adiponectina/química , Receptores Acoplados a Proteínas G/química , Homologia de Sequência
5.
Nat Commun ; 9(1): 5437, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575723

RESUMO

Alkaline ceramidases (ACERs) are a class of poorly understood transmembrane enzymes controlling the homeostasis of ceramides. They are implicated in human pathophysiology, including progressive leukodystrophy, colon cancer as well as acute myeloid leukemia. We report here the crystal structure of the human ACER type 3 (ACER3). Together with computational studies, the structure reveals that ACER3 is an intramembrane enzyme with a seven transmembrane domain architecture and a catalytic Zn2+ binding site in its core, similar to adiponectin receptors. Interestingly, we uncover a Ca2+ binding site physically and functionally connected to the Zn2+ providing a structural explanation for the known regulatory role of Ca2+ on ACER3 enzymatic activity and for the loss of function in E33G-ACER3 mutant found in leukodystrophic patients.


Assuntos
Ceramidase Alcalina/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Ceramidase Alcalina/química , Ceramidase Alcalina/genética , Animais , Sítios de Ligação/genética , Cálcio/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Receptores de Adiponectina/química , Células Sf9 , Spodoptera
6.
Bioconjug Chem ; 29(2): 403-409, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29328675

RESUMO

A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.


Assuntos
Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Edulcorantes/química , Edulcorantes/farmacologia , Animais , Linhagem Celular , Desenho de Fármacos , Fluorescência , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência/métodos , Imagem Óptica , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
7.
Food Chem ; 237: 825-832, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28764073

RESUMO

The sweetest tasting molecule known is the protein thaumatin, first isolated from the katemfe fruit, Thaumatococcus daniellii. Thaumatin is used in the food and beverage industry as a low-calorie sugar substitute. Thaumatin interacts with taste receptors in the oral cavity eliciting a persistent sweet taste and a bitter, liquorice flavor. Recombinant thaumatin was expressed in Pichia pastoris and through a co-expression strategy with a molecular chaperone, yields of one engineered thaumatin variant increased by greater than two-fold. A detailed purification strategy for thaumatin is reported resulting in a homogenous sample recovered at a yield of 42%. The recombinant thaumatins were extensively characterised using size exclusion chromatography for homogeneity, reversed-phase HPLC for purity (99%), peptide digest LC-MS/MS for sequence determination, and circular dichroism and tryptophan fluorescence spectroscopies for conformational characterisation. These new thaumatin variants are amenable for bioconjugation, providing chemical biology tools for thaumatin:taste receptor interaction studies.


Assuntos
Proteínas de Plantas/química , Marantaceae , Pichia , Edulcorantes , Espectrometria de Massas em Tandem
8.
Microb Biotechnol ; 10(6): 1640-1648, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28631300

RESUMO

We report herein the purification of a chloroform (CF)-reducing enzyme, TmrA, from the membrane fraction of a strict anaerobe Dehalobacter sp. strain UNSWDHB to apparent homogeneity with an approximate 23-fold increase in relative purity compared to crude lysate. The membrane fraction obtained by ultracentrifugation was solubilized in Triton X-100 in the presence of glycerol, followed by purification by anion exchange chromatography. The molecular mass of the purified TmrA was determined to be 44.5 kDa by SDS-PAGE and MALDI-TOF/TOF. The purified dehalogenase reductively dechlorinated CF to dichloromethane in vitro with reduced methyl viologen as the electron donor at a specific activity of (1.27 ± 0.04) × 103 units mg protein-1 . The optimum temperature and pH for the activity were 45°C and 7.2, respectively. The UV-visible spectrometric analysis indicated the presence of a corrinoid and two [4Fe-4S] clusters, predicted from the amino acid sequence. This is the first report of the production, purification and biochemical characterization of a CF reductive dehalogenase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clorofórmio/metabolismo , Clostridiales/enzimologia , Oxirredutases/química , Oxirredutases/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia por Troca Iônica , Clostridiales/química , Clostridiales/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA