Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Autoimmun Rev ; 23(2): 103485, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38040101

RESUMO

Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.

2.
Front Immunol ; 14: 1030395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283756

RESUMO

Healthy host-microbial mutualism with our intestinal microbiota relies to a large degree on compartmentalization and careful regulation of adaptive mucosal and systemic anti-microbial immune responses. However, commensal intestinal bacteria are never exclusively or permanently restricted to the intestinal lumen and regularly reach the systemic circulation. This results in various degrees of commensal bacteremia that needs to be appropriately dealt with by the systemic immune system. While most intestinal commensal bacteria, except for pathobionts or opportunistic pathogen, have evolved to be non-pathogenic, this does not mean that they are non-immunogenic. Mucosal immune adaptation is carefully controlled and regulated to avoid an inflammatory response, but the systemic immune system usually responds differently and more vigorously to systemic bacteremia. Here we show that germ-free mice have increased systemic immune sensitivity and display anti-commensal hyperreactivity in response to the addition of a single defined T helper cell epitope to the outer membrane porin C (OmpC) of a commensal Escherichia coli strain demonstrated by increased E. coli-specific T cell-dependent IgG responses following systemic priming. This increased systemic immune sensitivity was not observed in mice colonized with a defined microbiota at birth indicating that intestinal commensal colonization also regulates systemic, and not only mucosal, anti-commensal responses. The observed increased immunogenicity of the E. coli strain with the modified OmpC protein was not due to a loss of function and associated metabolic changes as a control E. coli strain without OmpC did not display increased immunogenicity.


Assuntos
Bacteriemia , Escherichia coli , Animais , Camundongos , Mucosa Intestinal , Simbiose , Intestinos , Bacteriemia/patologia
3.
Cell Mol Life Sci ; 79(4): 221, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377005

RESUMO

The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.


Assuntos
Microbioma Gastrointestinal , Imunidade nas Mucosas , Mucosa Intestinal , Fígado , Linfócitos T
4.
Cell ; 171(3): 655-667.e17, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053971

RESUMO

The gut microbiota contributes to the development of normal immunity but, when dysregulated, can promote autoimmunity through various non-antigen-specific effects on pathogenic and regulatory lymphocytes. Here, we show that an integrase expressed by several species of the gut microbial genus Bacteroides encodes a low-avidity mimotope of the pancreatic ß cell autoantigen islet-specific glucose-6-phosphatase-catalytic-subunit-related protein (IGRP206-214). Studies in germ-free mice monocolonized with integrase-competent, integrase-deficient, and integrase-transgenic Bacteroides demonstrate that the microbial epitope promotes the recruitment of diabetogenic CD8+ T cells to the gut. There, these effectors suppress colitis by targeting microbial antigen-loaded, antigen-presenting cells in an integrin ß7-, perforin-, and major histocompatibility complex class I-dependent manner. Like their murine counterparts, human peripheral blood T cells also recognize Bacteroides integrase. These data suggest that gut microbial antigen-specific cytotoxic T cells may have therapeutic value in inflammatory bowel disease and unearth molecular mimicry as a novel mechanism by which the gut microbiota can regulate normal immune homeostasis. PAPERCLIP.


Assuntos
Autoantígenos/imunologia , Bacteroides/imunologia , Colite/imunologia , Microbioma Gastrointestinal , Glucose-6-Fosfatase/imunologia , Adulto , Animais , Bacteroides/classificação , Bacteroides/enzimologia , Colite/microbiologia , Feminino , Glucose-6-Fosfatase/genética , Humanos , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mimetismo Molecular , Linfócitos T/imunologia
5.
PLoS One ; 7(10): e47004, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071696

RESUMO

Adenoviral (AdV) vectors represent most commonly utilized viral vaccines in clinical studies. While the role of CD8(+) cytotoxic T lymphocyte (CTL) responses in mediating AdV-induced protection is well understood, the involvement of CD4(+) T cell-provided signals in the development of functional CD8(+) CTL responses remain unclear. To explore CD4(+) T helper signals required for AdVova-stimulated CTL responses, we established an adoptive transfer system by transferring CD4(+) T cells derived from various knock out and transgenic mice into wild-type and/or CD4-deficient animals, followed by immunizing with recombinant ovalbumin (OVA)-expressing AdVova vector. Without CD4(+) T help, both primary and memory CTL responses were greatly reduced in this model, and were associated with increased PD-1 expression. The provision of OVA-specific CD4(+) T help in CD4(+) T cell-deficient mice restored AdVova-induced primary CTL responses, and supported survival and recall responses of AdVova-stimulated memory CTLs. These effects were specifically mediated by CD4(+) T cell-produced IL-2 and CD154 signals. Adoptive transfer of "helped" or "unhelped" effector and memory CTLs into naïve CD4(+) T cell-deficient or -sufficient mice also revealed an additional role for polyclonal CD4(+) T cell environment in the survival of AdVova-stimulated CTLs, partially explaining the extension of CTL contraction phase. Finally, during recall responses, CD4(+) T cell environment, particularly involving memory CD4(+) T cells, greatly enhanced expansion of memory CTLs. Collectively, our data strongly suggest a critical role for CD4(+) T help in multiple phases of AdV-stimulated CTL responses, and could partially explain certain failures in AdV-based immunization trials targeting malignant tumors and chronic diseases that are often associated with compromised CD4(+) T cell population and function.


Assuntos
Adenoviridae/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ligante de CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Interleucina-2/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/virologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Memória Imunológica , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Ovalbumina/genética , Ovalbumina/imunologia , Transdução de Sinais/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA