Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793260

RESUMO

The concept of ecology, historically rooted in the economy of nature, currently needs to evolve to encompass the intricate web of interactions among humans and various organisms in the environment, which are influenced by anthropogenic forces. In this review, the definition of ecology has been adapted to address the dynamic interplay of energy, resources, and information shaping both natural and artificial ecosystems. Previously, 3D (and 4D) printing technologies have been presented as potential tools within this ecological framework, promising a new economy for nature. However, despite the considerable scientific discourse surrounding both ecology and 3D printing, there remains a significant gap in research exploring the interplay between these directions. Therefore, a holistic review of incorporating ecological principles into 3D printing practices is presented, emphasizing environmental sustainability, resource efficiency, and innovation. Furthermore, the 'unecological' aspects of 3D printing, disadvantages related to legal aspects, intellectual property, and legislation, as well as societal impacts, are underlined. These presented ideas collectively suggest a roadmap for future research and practice. This review calls for a more comprehensive understanding of the multifaceted impacts of 3D printing and the development of responsible practices aligned with ecological goals.

2.
Materials (Basel) ; 16(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687467

RESUMO

The intensive development of 3D Concrete Printing (3DCP) technology causes constantly increased its share in the construction sector. However, in order to produce products with controlled properties, optimization of the technological process is still required. Automation of production based on additive manufacturing methods streamlines the process by comprehensively manufacturing building components that meet, among others, strength, visual, and insulation requirements. Moreover, the possibility of using computer simulations to assess the properties of the designed elements allows for a multitude of analyzed versions of the constructed partitions, which can be verified at the design stage. Thanks to such an opportunity, the process of designing building elements can be significantly improved. The article presents results related to the assessment of the level of thermal insulation of products that can be produced by additive technology, depending on the applied spatial geometry of the vertical partition and the amount and type of materials used. Eight original solutions of in-fill pattern were designed, for which both Finite Element Method (FEM) computer simulations of thermal conductivity and experimental measurements of thermal conductivity of samples were performed. On the basis of the obtained results, both the correctness of the simulation results for the various analyzed materials and their consistency with the practical results were found. Depending on the investigated geometry, for samples of the same dimensions and using the same material, the differences in the U-factor obtained by FEM analysis amounted to 61%. The best solution from the investigated spatial geometries of the vertical partitions has been indicated. The U parameter in the variant with the best thermal insulation was 0.183 W/m2K, which meets the requirements of Polish construction law. The issues discussed in this work can be the basis for the selection of the best solution possible for practical use during the production of building walls using the 3DCP method fulfilling the guidelines of applicable standards. Furthermore, they can be used as a tool for optimizing geometry in terms of energy savings and reducing waste production by both engineers developing 3DCP technologies and architects using innovative techniques for manufacturing building structures.

3.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687704

RESUMO

Nowadays, humanity has to face the problem of constantly increasing amounts of waste, which cause not only environmental pollution but also poses a critical danger to human health. Moreover, the growth of landfill sites involves high costs of establishment, development, and maintenance. Glass is one of the materials whose recycling ratio is still insufficient. Therefore, in the presented work, the influence of the particle size and share of waste glass on the consistency, morphology, specific surface area, water absorption, setting time, and mechanical properties of geopolymers was determined. Furthermore, for the first time, the fire resistance and final setting time of such geopolymer composites were presented in a wide range. Based on the obtained results, it was found that the geopolymer containing 20% unsorted waste glass obtained a final setting time that was 44% less than the sample not containing waste glass, 51.5 MPa of compressive strength (135.2% higher than the reference sample), and 13.5 MPa of residual compressive strength after the fire resistance test (164.7% more than the reference sample). Furthermore, it was found that the final setting time and the total pore volume closely depended on the additive's share and particle size. In addition, the use of waste glass characterized by larger particle sizes led to higher strength and lower mass loss after exposure to high temperatures compared to the composite containing smaller ones. The results presented in this work allow not only for reducing the costs and negative impact on the environment associated with landfilling but also for developing a simple, low-cost method of producing a modern geopolymer composite with beneficial properties for the construction industry.

4.
Materials (Basel) ; 16(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687725

RESUMO

Recent years have witnessed a growing global interest in 3D concrete printing technology due to its economic and scientific advantages. The application of foamed concrete, renowned for its exceptional thermal and acoustic insulation properties, not only holds economic attractiveness but also aligns seamlessly with the principles of sustainable development. This study explores various solutions related to 3D printing technology in construction, discussing the design, production, and properties of foamed concrete mixtures. The integration of 3D printing and the potential for automating the entire process offers opportunities to boost productivity and reduce construction costs. Furthermore, the utilization of foamed concrete with its commendable insulation properties will enable a reduction in the usage of materials other than concrete (e.g., mineral wool, facade mesh, and polystyrene), significantly facilitating the recycling process during building demolition. This, in turn, will lead to the preservation of nonrenewable natural resources and a decrease in CO2 emissions. Despite the promising results, there have been limited studies focusing on 3D printing with foamed materials, whereas a survey of the existing body of literature indicates a notable absence of endeavors pertaining to the utilization of aerated concrete within the realm of 3D printing, especially geopolymer composites (GP) and hybrid geopolymer composites (HGP). The outcomes delineated in the ensuing discourse are demonstrative for conventionally used materials rather than the additive manufacturing variant. Hence, this work aims to systematically review existing practices and techniques related to producing foamed concrete with 3D printing technology. This analysis also contributes to the establishment of a foundational framework and furnishes a preliminary basis upon which future endeavors aimed at the 3D printing of aerated concrete can be embarked. The findings from the literature analysis justify the desirability of continuing research on this topic, particularly when considering the potential for large-scale industrial implementation. This article provides a comprehensive state of the knowledge on the development of 3D printing techniques for foamed concrete mixtures. By consolidating and analyzing findings from different studies, this article offers insights into the advancements, challenges, and potential applications of foamed concrete in additive manufacturing processes. This, in turn, contributes to the overall understanding and advancement of 3D printing technologies using foamed concrete as a versatile and sustainable construction material. The encouraging results obtained from the analysis further underscore the need for the continued exploration of 3D printing, especially with an eye towards its industrial-scale implementation.

5.
Materials (Basel) ; 16(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687748

RESUMO

Massive amounts of deposited coal gangue derived from the mining industry constitute a crucial problem that must be solved. On the other hand, common knowledge about the recycling of glass products and the reuse of waste glass is still insufficient, which in turn causes economic and environmental problems. Therefore, this work investigated lightweight geopolymer foams manufactured based on coal gangue, metakaolin, and a mix of them to evaluate the influence of such waste on the geopolymer matrix. In addition, the effect of 20% (wt.) of waste glass on the foams was determined. Mineralogical and chemical composition, thermal behaviour, thermal conductivity, compressive strength, morphology, and density of foams were investigated. Furthermore, the structure of the geopolymers was examined in detail, including pore and structure thickness, homogeneity, degree of anisotropy, porosity with division for closed and open pores, as well as distribution of additives and pores using micro-computed tomography (microCT). The results show that the incorporation of waste glass increased compressive strength by approximately 54% and 9% in the case of coal-gangue-based and metakaolin-based samples, respectively. The porosity of samples ranged from 67.3% to 58.7%, in which closed pores constituted 0.3-1.8%. Samples had homogeneous distributions of pores and additions. Furthermore, the thermal conductivity ranged from 0.080 W/(m·K) to 0.117 W/(m·K), whereas the degree of anisotropy was 0.126-0.187, indicating that the structure of foams was approximate to isotropic.

6.
Materials (Basel) ; 16(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241480

RESUMO

Alumina is one of the most popular ceramic materials widely used in both tooling and construction applications due to its low production cost, and high properties. However, the final properties of the product depend not only on the purity of the powder, but also, e.g., on its particle size, specific surface area, and the production technology used. These parameters are particularly important in the case of choosing additive techniques for the production of details. Therefore, the article presents the results of comparing five grades of Al2O3 ceramic powder. Their specific surface area (via Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods), particle size distribution, and phase composition by X-ray diffraction (XRD) were determined. Moreover, the surface morphology was characterized by the scanning electron microscopy (SEM) technique. The discrepancy between generally available data and the results obtained from measurements has been indicated. Moreover, the method of spark plasma sintering (SPS), equipped with the registration system of the position of the pressing punch during the process, was used to determine the sinterability curves of each of the tested grades of Al2O3 powder. Based on the obtained results, a significant influence of the specific surface area, particle size, and the width of their distribution at the beginning of the Al2O3 powder sintering process was confirmed. Furthermore, the possibility of using the analyzed variants of powders for binder jetting technology was assessed. The dependence of the particle size of the powder used on the quality of the printed parts was demonstrated. The procedure presented in this paper, which involves analyzing the properties of alumina varieties, was used to optimize the Al2O3 powder material for binder jetting printing. The selection of the best powder in terms of technological properties and good sinterability makes it possible to reduce the number of 3D printing processes, which makes it more economical and less time-consuming.

7.
Materials (Basel) ; 16(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903157

RESUMO

In order to protect the environment and counteract climate change, it is necessary to take any actions that enable a reduction in CO2 emissions. One of the key areas is research focused on developing alternative sustainable materials for construction to reduce the global demand for cement. This work presents the properties of foamed geopolymers with the addition of waste glass as well as determined the optimal size and amount of waste glass for improving the mechanical and physical features of the produced composites. Several geopolymer mixtures were fabricated by replacing coal fly ash with 0%, 10%, 20%, and 30% of waste glass by weight. Moreover, the effect of using different particle size ranges of the addition (0.1-1200 µm; 200-1200 µm; 100-250 µm; 63-120 µm; 40-63 µm; 0.1-40 µm) in the geopolymer matrix was examined. Based on the results, it was found that the application of 20-30% of waste glass with a particle size range of 0.1-1200 µm and a mean diameter of 550 µm resulted in approximately 80% higher compressive strength in comparison to unmodified material. Moreover, the samples produced using the smallest fraction (0.1-40 µm) of waste glass in the amount of 30% reached the highest specific surface area (43.711 m2/g), maximum porosity (69%), and density of 0.6 g/cm3.

8.
Materials (Basel) ; 15(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36079513

RESUMO

Three-dimensional concrete printing (3DCP) is an innovative technology that can lead to breakthrough modifications of production processes in the construction industry. The paper presents for the first time the possibility of 3D printing concrete-geopolymer hybrids reinforced with aramid roving. Reference concrete samples and concrete-geopolymer hybrids composed of 95% concrete and 5% geopolymer based on fly ash or metakaolin were produced. The properties of the samples without reinforcement and samples with 0.5% (wt.) aramid roving were compared. The frost resistance tests, UV radiation resistance, and thermal conductivity were evaluated for samples that were 3D-printed or produced by the conventional casting method. Compressive strength tests were carried out for each sample exposed to freeze-thaw cycles and UV radiation. It was observed that after the frost resistance test, the samples produced by the 3D printing technology had a minor decrease in strength properties compared to the samples made by casting. Moreover, the thermal conductivity coefficient was higher for concrete-geopolymer hybrids than concrete reinforced with aramid roving.

9.
Biomater Adv ; 136: 212791, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929324

RESUMO

Tailoring surface properties by layer-by-layer (LBL) deposition directed on the construction of complex multilayer coatings with nanoscale precision enables the development of novel structures and devices with desired functional properties (i.e., osseointegration, bactericidal activity, biocorrosion protection). Herein, electrostatic self-assembly was applied to fabricate biopolymer-based coatings involving chitosan (CSM) and alginate (AL) enriched with caffeic acid (CA) on Ti-6Al-7Nb alloyed surfaces. The method of CA grafting onto the chitosan backbone (CA-g-CSM) as well as all used reagents for implant functionalization were chosen as green and sustainable approach. The final procedure of surface modification of the Ti-6Al-7Nb alloy consists of three steps: (i) chemical treatment in Piranha solution, (ii) plasma chemical-activation of the Ti alloy surface in a RF CVD (Radio Frequency Chemical Vapour Deposition) reactor using Ar, O2 and NH3 gaseous precursors, and (iii) a multi-step deposition of bio-functional coatings via dip-coating method. Corrosion tests have revealed that the resulting chitosan-based coatings, also these involving CA, block the specimen surface and hinder corrosion of titanium alloy. Furthermore, the antioxidant layers are characterized by beneficial level of roughness (Ra up ca. 350 nm) and moderate hydrophilicity (59°) with the dispersion part of conducive surface energy ca. 30 mJ/m2. Noteworthy, all coatings are biocompatible as the intact morphology of cultured eukaryotic cells ensured proper growth and proliferation, while exhibit bacteriostatic character, particularly in contact with Gram-(-) bacteria (E. coli). The study indicates that the applied simple sustainable strategy has contributed significantly to obtaining homogeneous, stable, and biocompatible while antibacterial biopolymer-based coatings.


Assuntos
Quitosana , Titânio , Ligas , Ácidos Cafeicos , Quitosana/química , Escherichia coli , Imersão , Eletricidade Estática , Titânio/química
10.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897605

RESUMO

Today, numerous design solutions require joining thin-walled sheets or profiles as the traditional methods of welding with a consumable electrode in gas shielding, most often used in production processes, do not work well. The reason for this is that a large amount of heat is supplied to the joint, causing numerous welding deformations, defects, and incompatibilities. Moreover, the visual aspect of the connections made more and more often plays an equally crucial role. Therefore, it is important to look for solutions and compare different joining processes in order to achieve production criteria. The paper compares the properties of a 1.5 mm thick steel sheet joined by the manual and robotic MAG 135 and 138 welding process, manual and robotic laser welding, CMT welding with the use of solid or flux-cored wire, and butt welding. The macro- and microstructure, as well as the microhardness distribution of individual regions of the joints, were analyzed depending on the type of joining technology used. Furthermore, the mechanical properties of individual zones of joints were investigated with the use of a digital image correlation system. On the basis of the obtained test results, it was found that the joints made by the processes of manual laser welding and butt welding were characterized by a very regular weld shape, the smallest joint width, and greater grain refinement compared to other analyzed processes. Moreover, this method was characterized by the narrowest zone of hardness increase, only 3 mm, compared to, e.g., a joint made in the process of robotic welding CMT, for which this zone was more than twice as wide. Furthermore, the heat-affected zone for the joints made in this way, in relation to the welds produced by the MAG 135/138 method, was, respectively, 2 and 2.7 times smaller.

11.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744173

RESUMO

There are no standards for testing the properties of 3D-printed materials; hence, the need to develop guidelines for implementing this type of experiment is necessary. The work concerns the development of a research methodology for interlayer bond strength evaluation in 3D-printed mineral materials. In additive manufactured construction elements, the bond strength is a significant factor as it determines the load-bearing capacity of the entire structural element. After we completed a literature review, the following three test methods were selected for consideration: direct tensile, splitting, and shear tests. The paper compares the testing procedure, results, and sample failure modes. The splitting test was found to be the most effective for assessing layer adhesion, by giving the lowest scatter of results while being an easy test to carry out.

12.
Materials (Basel) ; 15(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35591696

RESUMO

Geopolymer concretes can be a viable alternative to conventional Portland cement-based materials. In their design, it is important to maintain an appropriate liquid-to-solid ratio (L/S), which affects several properties, such as the compressive strength, water absorption, and frost resistance. The objective of this paper is to analyze the influence of the fly-ash and metakaolin precursor types for three different L/S ratios: 0.30, 0.35, and 0.45. The results of the physical and mechanical properties, including the apparent density and compressive strength, as well the durability parameters, including frost resistance and water penetration depth, are presented in this paper. It was found that as the L/S ratio decreased, the average compressive strength increased for all materials. After freeze-thaw cycles, decreases in the compressive strength properties were observed for all types of materials-metakaolin- and fly ash-based-irrespective of the L/S ratio. Moreover, the frost resistance of geopolymers increased with the increase in the L/S ratio. The printability of the mixes was also verified in order to confirm the application of the developed materials to additive manufacturing processes.

13.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454512

RESUMO

In recent years, 3D concrete printing technology has been developing dynamically. Intensive research is still being carried out on the composition of the materials dedicated to innovative 3D printing solutions. Here, for the first time, concrete-geopolymer hybrids produced with 3D printing technology and dedicated environmentally friendly building construction are presented. The concrete-geopolymer hybrids consisting of 95% concrete and 5% geopolymer based on fly ash or metakaolin were compared to standard concrete. Moreover, 3D printed samples were compared with the samples of the same composition but prepared by the conventional method of casting into molds. The phase composition, water leachability, compressive, and flexural strength in the parallel and perpendicular directions to the printing direction, and fire resistance followed by compressive strength were evaluated. Concrete-geopolymer hybrids were shown to contain a lower content of hazardous compounds in leaches than concrete samples. The concentration of toxic metals did not exceed the limit values indicated in the Council Decision 2003/33/EC; therefore, the materials were classified as environmentally neutral. The different forms of Si/Al in fly ash and metakaolin resulted in the various potentials for geopolymerization processes, and finally influenced the densification of the hybrids and the potential for immobilization of toxic elements. Although the compressive strength of concrete was approximately 40% higher for cast samples than for 3D printed ones, for the hybrids, the trend was the opposite. The addition of fly ash to concrete resulted in a 20% higher compressive strength compared to an analogous hybrid containing the addition of metakaolin. The compressive strength was 7-10% higher provided the samples were tested in the parallel direction to the Z-axis of the printout. The sample compressive strength of 24-43 MPa decreased to 8-19 MPa after the fire resistance tests as a result of moisture evaporation, weight loss, thermal deformation, and crack development. Importantly, the residual compressive strength of the hybrid samples was 1.5- to 2- fold higher than the concrete samples. Therefore, it can be concluded that the addition of geopolymer to the concrete improved the fire resistance of the samples.

14.
Materials (Basel) ; 15(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35207895

RESUMO

Magnesium alloys, due to their unique properties, low density and high strength properties, are becoming more frequently used in industrial applications. However, a limitation of their use may be the need to ensure high abrasive wear resistance and corrosion resistance. Therefore, magnesium alloys are often protected by applying protective coatings. The paper presents the influence of the modification of the electrolyte composition, with or without the addition of borax, on the morphology (observed by SEM method) and phase composition (analyzed by EDS and XRD) of the formed layers on the AZ91 magnesium alloy, and their abrasive wear (determined with Ball-on-Disc method) and corrosion resistance (evaluated using the immersion method and by electrochemical tests), especially in chloride solutions. It has been clearly demonstrated that the modification of the electrolyte composition significantly impacts the final properties of the protective coatings on the AZ91 alloy formed by the plasma electrolytic oxidation (PEO) process. On the basis of the results, it was found that the new type of PEO coatings with the borax addition, compared to base PEO coatings, showed significantly higher abrasion resistance and an order of magnitude lower corrosion rate.

15.
Polymers (Basel) ; 14(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054669

RESUMO

Waste ashes and radiation are hazardous environmental and health factors; thus, a lot of attention is paid to their reduction. We present eco-geopolymer building materials (GPBMs) based on the class F fly ashes (FFAs) from thermal power plants (TPPs) and their implementation as a barrier against radioactive radiation. Different methods of production, ratios of FFA to alkali activator, and temperatures of curing were tested. Small spherical particles and higher content of SiO2 resulted in developed surface area and higher reactivity of Isken TPP FFA than Catalagzi TPP FFA. Lower activator concentration (10% vs. 20%) and curing temperature (70 vs. 100 °C) caused an increase in GPBM compressive strength; the highest value was measured as 93.3 MPa. The highest RA was measured for GPBMs, provided alkali activator ratio (Na2SiO3/NaOH) was >2 and its concentration was 20%. The mathematical model developed in this study proved FFA quantity, and thus GPBM mechanical properties, as key factors influencing RA. In the light of these results, the lightweight GPBMs can be excellent materials for the construction sector dedicated to immobilization, storage, and disposal for radionuclides or barriers against radiation; however, multiple steps of their production require careful optimization.

16.
Materials (Basel) ; 15(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35057200

RESUMO

The aim of this article was to analyze the fracture behavior of geopolymer composites based on fly ash or metakaolin with fine aggregate and river sand, with three types of reinforcement: glass, carbon, and aramid fiber, at three different temperatures, approximately: 3 °C, 20 °C, and 50 °C. The temperatures were selected as a future work temperature for composites designed for additive manufacturing technology. The main research method used was bending strength tests in accordance with European standard EN 12390-5. The results showed that the addition of fibers significantly improved the bending strength of all composites. The best results at room temperature were achieved for the metakaolin-based composites and sand reinforced with 2% wt. aramid fiber-17 MPa. The results at 50 °C showed a significant decrease in the bending strength for almost all compositions, which are unexpected results, taking into account the fact that geopolymers are described as materials dedicated to working at high temperatures. The test at low temperature (ca. 3 °C) showed an increase in the bending strength for almost all compositions. The grounds of this type of behavior have not been clearly stated; however, the likely causes of this are discussed.

17.
Materials (Basel) ; 14(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771832

RESUMO

The main objective of the article is to develop the concept of flock fragmentation and the averaging method for the application of electrocoagulation in the process of treating wastewater from coke ovens. The designed solution was part of an innovative system for the coke oven wastewater treatment process. The system is dedicated to removing the hazardous elements and compounds from wastewater from leaching ashes in municipal waste incineration plants. The design of the process and its automatization was based on a quantitative simulation method. The balance equations of mass, energy, and momentum of transport, complemented by the kinetics of the related reaction, are used during the calculation of the process. The main result achieved is a practical solution-the reactor's scheme, classified due to a patent procedure in the Polish Patent Office.

18.
Materials (Basel) ; 14(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772094

RESUMO

Designers' efforts to use the lightest possible materials with very good mechanical properties mean that in recent years magnesium alloys have been increasingly used. It is well-known that the use of various plastic working processes allows achieving even better strength properties of the material, often without significant loss of plastic properties in relation to the properties of products obtained in the casting process. The article presents the results of research on microstructural changes and mechanical properties of the alloy AZ91 (MgAl9Zn1) occurring in samples subjected to conventional plastic deformation and the KOBO method. The obtained results were compared to the properties of reference samples, i.e., cast samples. The article presents the advantage of using the low-temperature KOBO method compared to the high-temperature deformation in a conventional manner. Moreover, it has been shown that the use of KOBO extrusion allows the alloy AZ91 (MgAl9Zn1) to obtain superplasticity properties with an elongation of up to 577% compared to the cast reference sample, which is generally classified as difficult for plastic deformation.

19.
Materials (Basel) ; 14(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832276

RESUMO

Nowadays, one very dynamic development of 3D printing technology is required in the construction industry. However, the full implementation of this technology requires the optimization of the entire process, starting from the design of printing ideas, and ending with the development and implementation of new materials. The article presents, for the first time, the development of hybrid materials based on a geopolymer or ordinary Portland cement matrix that can be used for various 3D concrete-printing methods. Raw materials used in the research were defined by particle size distribution, specific surface area, morphology by scanning electron microscopy, X-ray diffraction, thermal analysis, radioactivity tests, X-ray fluorescence, Fourier transform infrared spectroscopy and leaching. The geopolymers, concrete, and hybrid samples were described according to compressive strength, flexural strength, and abrasion resistance. The study also evaluates the influence of the liquid-to-solid ratio on the properties of geopolymers, based on fly ash (FA) and metakaolin (MK). Printing tests of the analyzed mixtures were also carried out and their suitability for various applications related to 3D printing technology was assessed. Geopolymers and hybrids based on a geopolymer matrix with the addition of 5% cement resulted in the final materials behaving similarly to a non-Newtonian fluid. Without additional treatments, this type of material can be successfully used to fill the molds. The hybrid materials based on cement with a 5% addition of geopolymer, based on both FA and MK, enabled precise detail printing.

20.
Materials (Basel) ; 14(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576404

RESUMO

The aim of the article is to analyze the structure and mechanical properties in terms of the cracking mechanics of geopolymer composites based on fly ash and river sand, as well as metakaolin and river sand with three types of reinforcement material: glass fiber, carbon fiber, and aramid fiber, in terms of their use in additive manufacturing. Geopolymer composites were reinforced with fibers in a volume ratio of 0.5%, 1.0%, and 2.0%. Subsequently, these samples were subjected to bending strength tests in accordance with the European standard EN 12390-3. The addition of fibers significantly improved the bending strength of all composites made of metakaolin and sand. The reinforcement with aramid fiber in the amount of 2.0% resulted in more than a 3-fold increase in strength compared to the reinforcement-free composites. An analysis of the morphology of the fibers was carried out on the basis of photos taken from an electron microscope. The correct addition of fibers changes the nature of the fracture from brittle to more ductile and reduces the number of cracks in the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA