Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Water Res ; 76: 110-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25794466

RESUMO

Knowledge about characteristics of gas releases from various types of organic wastes can assist in developing gas pollution reduction technologies and establishing environmental regulations. Five different organic wastes, i.e., four types of animal manure (swine, beef, dairy, and layer hen) and municipal wastewater, were studied for their characteristics of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and sulfur dioxide (SO2) releases for 38 or 43 days in reactors under laboratory conditions. Weekly waste additions and continuous reactor headspace ventilation were supplied to simulate waste storage conditions. Results demonstrated that among the five waste types, layer hen manure and municipal wastewater had the highest and lowest NH3 release potentials, respectively. Layer manure had the highest and dairy manure had the lowest CO2 release potentials. Dairy manure and layer manure had the highest and lowest H2S release potentials, respectively. Beef manure and layer manure had the highest and lowest SO2 releases, respectively. The physicochemical characteristics of the different types of wastes, especially the total nitrogen, total ammoniacal nitrogen, dry matter, and pH, had strong influence on the releases of the four gases. Even for the same type of waste, the variation in physicochemical characteristics affected the gas releases remarkably.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Dióxido de Carbono/análise , Sulfeto de Hidrogênio/análise , Esterco , Dióxido de Enxofre/análise , Águas Residuárias/análise , Animais , Bovinos , Galinhas , Nitrogênio/análise , Suínos
2.
J Environ Manage ; 152: 91-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617873

RESUMO

Volatile fatty acids (VFA) play an important role in the biodegradation of organic wastes and production of bioenergy under anaerobic digestion, and are related to malodors. However, little is known about the dynamics of VFA during dairy manure storage. This study evaluated the characteristics of VFA in dairy manure before and after anaerobic co-digestion in a laboratory experiment using eight lab-scale reactors. The reactors were loaded with four different types of dairy manure: (1) liquid dairy manure from a freestall barn, (2) mixture of dairy manure and co-digestion food processing wastes at the inlet of an anaerobic digester, (3) effluent from the digester outlet, and (4) the liquid fraction of effluent from a solid separator. Four VFA (acetic, propionic, butyric, and 2-methylbutyric acids) were identified and quantified in weekly manure samples from all reactors. Results showed that the dominant VFA was acetic acid in all four manure sources. The off-farm co-digestion wastes significantly increased the total VFA concentrations and the proportions of individual VFA in the influent. The dairy manure under storage demonstrated high temporal and spatial variations in pH and VFA concentrations. Anaerobic digestion reduced the total VFA by 86%-96%; but solid-liquid separation did not demonstrate a significant reduction in total VFA in this study. Using VFA as an indicator, anaerobic digestion exhibited an effective reduction of dairy manure odor offensiveness.


Assuntos
Poluição do Ar/prevenção & controle , Ácidos Graxos Voláteis/metabolismo , Esterco/análise , Odorantes/prevenção & controle , Anaerobiose , Animais , Biodegradação Ambiental , Reatores Biológicos , Bovinos , Esterco/classificação
3.
J Environ Qual ; 43(4): 1143-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603063

RESUMO

Ammonia (NH) emissions vary considerably among farms as influenced by climate and management. Because emission measurement is difficult and expensive, process-based models provide an alternative for estimating whole farm emissions. A model that simulates the processes of NH formation, speciation, aqueous-gas partitioning, and mass transfer was developed and incorporated in a whole farm simulation model (the Integrated Farm System Model). Farm sources included manure on the floor of the housing facility, manure in storage (if used), field-applied manure, and deposits on pasture (if grazing is used). In a comprehensive evaluation of the model, simulated daily, seasonal, and annual emissions compared well with data measured over 2 yr for five free stall barns and two manure storages on dairy farms in the eastern United States. In a further comparison with published data, simulated and measured barn emissions were similar over differing barn designs, protein feeding levels, and seasons of the year. Simulated emissions from manure storage were also highly correlated with published emission data across locations, seasons, and different storage covers. For field applied manure, the range in simulated annual emissions normally bounded reported mean values for different manure dry matter contents and application methods. Emissions from pastures measured in northern Europe across seasons and fertilization levels were also represented well by the model. After this evaluation, simulations of a representative dairy farm in Pennsylvania illustrated the effects of animal housing and manure management on whole farm emissions and their interactions with greenhouse gas emissions, nitrate leaching, production costs, and farm profitability.

4.
Bioresour Technol ; 127: 366-77, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23138059

RESUMO

This study describes cleaning of a waste gas stream using bench scale biofilters (BFs) or biotrickling filters (BTFs). The gas stream contained a mixture of acetone, n-butanol, methane, ethylene, and ammonia, and was diverted uniformly to six biofilters and four biotrickling filters. The biofilters were packed with either perlite (BF-P), polyurethane foam (BF-F), or a mixture of compost, wood chips, and straw (BF-C), whereas the biotrickling filters contained either perlite (BTF-P) or polyurethane foam (BTF-F). Experimental results showed that both BFs and BTFs packed with various media were able to achieve complete removal of highly soluble compounds such as acetone, n-butanol, and ammonia of which the dimensionless Henry's constants (H) are less than 0.01. Methane was not removed due to its extreme insolubility (H>30). However, the ethylene (H ≈ 9) removal efficiencies depended on trickle water flow rates, media surface areas, and ammonia gas levels.


Assuntos
Poluentes Atmosféricos/metabolismo , Poluição do Ar/prevenção & controle , Reatores Biológicos , Filtração/métodos , 1-Butanol/metabolismo , Acetona/metabolismo , Óxido de Alumínio , Amônia/metabolismo , Etilenos/metabolismo , Metano/metabolismo , Poliuretanos , Esgotos/microbiologia , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Madeira
5.
J Environ Qual ; 42(6): 1674-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602408

RESUMO

Hydrogen sulfide (HS) emissions were measured periodically over the course of 2 yr at three sow waste lagoons representing humid mesothermal (North Carolina, NC), humid microthermal (Indiana, IN), and semiarid (Oklahoma, OK) climates. Emissions were determined using a backward Lagrangian stochastic model in conjunction with line-sampled HS concentrations and measured turbulence. The median annual sow-specific (area-specific) lagoon emissions at the OK farm were approximately 1.6 g head [hd] d (5880 µg m s), whereas those at the IN and NC sow farms were 0.035 g hd d (130 µg m s), and 0.041 g hd d (260 µg m s), respectively. Hydrogen sulfide emissions generally increased with wind speed. The daily HS emissions from the OK lagoon were greatest during the first half of the year and decreased as the year progressed. Emissions were episodic at the NC and IN lagoons. The generally low emissions at the NC and IN lagoons were probably a result of significant populations of purple sulfur bacteria maintained in the humid mesothermal and humid microthermal climates. Most of the large HS emission events at the NC and IN lagoons appeared to be a result of either precipitation events or liquid pump-out events. The high emissions at the OK lagoon in a semiarid climate were largely a result of high wind speeds enhancing both lagoon and air boundary layer mixing. The climate (air temperature, winds, and precipitation) appeared to influence the HS emissions from lagoons.

6.
J Air Waste Manag Assoc ; 62(11): 1264-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23210218

RESUMO

This paper describes part of a comprehensive National Air Emissions Monitoring Study (NAEMS) conducted at a swine finishing farm located in the state of Indiana, in the United States. The NAEMS was a 2-year study of emissions from animal feeding operations that produce pork, chicken meat, eggs, and milk. It provided emission data for the US. Environmental Protection Agency (EPA) to develop tools for estimating emissions from livestock farms. The study in Indiana focused on quantifying and characterizing emissions of gases, particulate matter (PM), and volatile organic compounds (VOCs) from a swine finishing quad (four 1000-head rooms under one roof). Long-term continuous and quasi-continuous measurements were conducted with 157 on-line measurement variables using an array of instruments and sensors for gas and PM concentrations, fan operation, room static pressures, indoor temperature and humidity, animal activity and feeding times, and weather conditions. Pig inventory and weight, feed type and quantity, and manure accumulation and composition were also documented. Systematic tests of the measurement system were conducted. Monitoring methodologies, instrumentation applications, equipment maintenance, quality controls, and system performances are presented and can be used as a reference in assessing research quality and improving future environmental studies on livestock facilities.


Assuntos
Poluentes Atmosféricos/química , Gases/química , Abrigo para Animais , Eliminação de Resíduos/métodos , Projetos de Pesquisa , Suínos , Animais , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Indiana , Esterco , Ventilação
7.
J Hazard Mater ; 241-242: 331-9, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063558

RESUMO

This study investigated the effects of filter media types and nitrate (NO(3)(-)) concentrations in nutrient solutions on C(2)H(4) biofiltration. A new nutrient solution with zero NO(3)(-) concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L(-1) of NO(3)(-) was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min(-1), and inlet C(2)H(4) concentrations of 20-30 mg m(-3). NO(3)(-) concentration and media type significantly affected the C(2)H(4) removal efficiencies in all types of biofiltration. The perlite media with no NO(3)(-) achieved C(2)H(4) removal efficiencies 10-50% higher than the others. A NO(3)(-) concentration as high as 2 g L(-1) in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C(2)H(4) degraders. In addition, the perlite media resulted in higher C(2)H(4) removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Reatores Biológicos/microbiologia , Etilenos/isolamento & purificação , Filtração/métodos , Nitratos/química , Compostos Orgânicos Voláteis/isolamento & purificação , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Desenho de Equipamento , Filtração/instrumentação , Concentração de Íons de Hidrogênio , Fatores de Tempo
8.
Chemosphere ; 89(7): 769-88, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22682363

RESUMO

Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on gas Chromatography (GC) and liquid chromatography (LC) with different detectors most of which require time-consuming procedures to obtain results. Various methodologies and technologies in sampling, sample preparation, and sample analysis have been used. Only four publications reported using GC based analyzers and PTR-MS (proton-transfer-reaction mass spectrometry) that allowed continuous VOC measurement. Because of this, the majority of experimental studies were only performed on limited numbers of air, manure, or dust samples. Many aerial VOCs had concentrations that were too low to be identified by the GC peaks. Although VOCs emitted from swine facilities have environmental concerns, only a few studies investigated VOC emission rates, which ranged from 3.0 to 176.5mgd(-1)kg(-1) pig at swine finishing barns and from 2.3 to 45.2gd(-1)m(-2) at manure storages. Similar to the other pollutants, spatial and temporal variations of aerial VOC concentrations and emissions existed and were significantly affected by manure management systems, barn structural designs, and ventilation rates. Scientific research in this area has been mainly driven by odor nuisance, instead of environment or health concerns. Compared with other aerial pollutants in animal agriculture, the current scientific knowledge about VOCs at swine facilities is still very limited and far from sufficient to develop reliable emission factors.


Assuntos
Compostos Orgânicos Voláteis/análise , Agricultura , Poluentes Atmosféricos/análise , Animais , Cromatografia Gasosa , Poeira/análise , Monitoramento Ambiental , Esterco/análise , Espectrometria de Massas , Odorantes/análise , Suínos
9.
J Air Waste Manag Assoc ; 62(3): 322-35, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22482290

RESUMO

The tapered element oscillating microbalance (TEOM) is one type of continuous ambient particulate matter (PM) monitor. Adsorption and desorption of moisture and semivolatile species may cause positive or negative artifacts in TEOM PM mass measurement. The objective of this field study was to investigate possible uncertainties associated with TEOM measurements in the poultry operation environment. For comparisons of TEOM with filter-based gravimetric method, four instruments (TEOM-PM10, low-volume PM10 sampler TEOM-PM2.5, and PM2.5 speciation sampler) were collocated and tested inside a poultry house for PM2.5 and PM10 (PM with aerodynamic equivalent diameter < or =2.5 and < or =10 microm, respectively) measurements. Fifteen sets of 24-hr PM10 concentrations and 13 sets of 24-hr PM2.5 measurements were obtained. Results indicate that compared with filter-based gravimetric method, TEOM gave significantly lower values of both PM10 and PM2.5 mass concentrations. For PM10, the average ratio of TEOM to the gravimetric method was 0.936. For PM2.5, the average ratio of TEOM to the gravimetric method was 0.738. Particulate matter in the poultry houses possibly contains semivolatile compounds and moisture due to high levels of relative humidity (RH) and gas pollutants. The internal heating mechanism of the TEOM may cause losses in mass through volatilization. To investigate the effects of TEOM settings on concentration measurements, the heaters of two identical TEOMs were set at 50 degrees C, 30 degrees C, or no heating at all. They were collocated and tested for total suspended particle (TSP), PM10, and PM25 measurements in layer house for 6 weeks. For all TSR PM10, and PM2.5 measurements, the internal TEOM temperature setting had a significant effect (P < 0.05). Significantly higher PM mass concentrations were measured at lower temperature settings. The effects of environmental (i.e., temperature, RH, NH3 and CO2 concentrations) and instrumental (i.e., filter loading and noise) parameters on PM measurements were also assessed using regression analysis.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/instrumentação , Material Particulado/química , Monitoramento Ambiental/métodos , Humanos
10.
Sci Total Environ ; 408(23): 5917-23, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20850169

RESUMO

Animal manure is a significant source of environmental pollution and manure dilution in barn cleaning and slurry storage is a common practice in animal agriculture. The effect of swine manure dilution on releases of four pollutant gases was studied in a 30-day experiment using eight manure reactors divided into two groups. One group was treated with swine manure of 6.71% dry matter and another with manure diluted with water to 3.73% dry matter. Ammonia release from the diluted manure was 3.32 mg min(-1)m(-2) and was 71.0% of the 4.67 mg min(-1)m(-2) from the undiluted manure (P<0.01). Because the ammonia release reduction ratio was lower than the manure dilution ratio, dilution could increase the total ammonia emissions from swine manure, especially in lagoons with large liquid surface areas. Carbon dioxide release of 87.3 mg min(-1)m(-2) from the diluted manure was 56.4% of the 154.8 mg min(-1)m(-2) from the undiluted manure (P<0.01). Manure dry matter was an important factor for carbon dioxide release from manure. No differences were observed between the treatments (P>0.05) for both hydrogen sulfide and sulfur dioxide releases. Therefore, dilution could also significantly increase the total releases of hydrogen sulfide and sulfur dioxide to the environment because dilution adds to the total manure volume and usually also increases the total gas release surface area.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Dióxido de Carbono/análise , Sulfeto de Hidrogênio/análise , Esterco , Dióxido de Enxofre/análise , Animais , Suínos , Gerenciamento de Resíduos
11.
J Air Waste Manag Assoc ; 60(6): 702-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20564996

RESUMO

Understanding temporal and spatial variations of aerial pollutant concentrations is important for designing air quality monitoring systems. In long-term and continuous air quality monitoring in large livestock and poultry barns, these systems usually use location-shared analyzers and sensors and can only sample air at limited number of locations. To assess the validity of the gas sampling design at a commercial layer farm, a new methodology was developed to map pollutant gas concentrations using portable sensors under steady-state or quasi-steady-state barn conditions. Three assessment tests were conducted from December 2008 to February 2009 in two manure-belt layer barns. Each barn was 140.2 m long and 19.5 m wide and had 250,000 birds. Each test included four measurements of ammonia and carbon dioxide concentrations at 20 locations that covered all operating fans, including six of the fans used in the long-term sampling that represented three zones along the lengths of the barns, to generate data for complete-barn monitoring. To simulate the long-term monitoring, gas concentrations from the six long-term sampling locations were extracted from the 20 assessment locations. Statistical analyses were performed to test the variances (F-test) and sample means (t test) between the 6- and 20-sample data. The study clearly demonstrated ammonia and carbon dioxide concentration gradients that were characterized by increasing concentrations from the west to east ends of the barns following the under-cage manure-belt travel direction. Mean concentrations increased from 7.1 to 47.7 parts per million (ppm) for ammonia and from 2303 to 3454 ppm for carbon dioxide from the west to east of the barns. Variations of mean gas concentrations were much less apparent between the south and north sides of the barns, because they were 21.2 and 20.9 ppm for ammonia and 2979 and 2951 ppm for carbon dioxide, respectively. The null hypotheses that the variances and means between the 6- and 20-sample data were equal at alpha = 0.05 (P > 0.05) were accepted for both gases. The results proved that the long-term gas sampling design was valid in this instance and suggested that the gas sampling design in these two barns was one of the best on the basis of available long-term monitoring instrumentation at reasonable cost.


Assuntos
Monitoramento Ambiental/métodos , Gases/análise , Esterco , Animais , Abrigo para Animais
12.
Sensors (Basel) ; 10(12): 11590-604, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163544

RESUMO

Continuously monitoring the operation of each individual fan can significantly improve the measurement quality of aerial pollutant emissions from animal buildings that have a large number of fans. To monitor the fan operation by detecting the fan vibration is a relatively new technique. A low-cost electronic vibration sensor was developed and commercialized. However, its large scale application has not yet been evaluated. This paper presents long-term performance results of this vibration sensor at two large commercial layer houses. Vibration sensors were installed on 164 fans of 130 cm diameter to continuously monitor the fan on/off status for two years. The performance of the vibration sensors was compared with fan rotational speed (FRS) sensors. The vibration sensors exhibited quick response and high sensitivity to fan operations and therefore satisfied the general requirements of air quality research. The study proved that detecting fan vibration was an effective method to monitor the on/off status of a large number of single-speed fans. The vibration sensor itself was $2 more expensive than a magnetic proximity FRS sensor but the overall cost including installation and data acquisition hardware was $77 less expensive than the FRS sensor. A total of nine vibration sensors failed during the study and the failure rate was related to the batches of product. A few sensors also exhibited unsteady sensitivity. As a new product, the quality of the sensor should be improved to make it more reliable and acceptable.


Assuntos
Ar Condicionado/instrumentação , Galinhas , Ovos , Abrigo para Animais , Tecnologia de Sensoriamento Remoto/instrumentação , Ar Condicionado/métodos , Poluição do Ar em Ambientes Fechados/análise , Animais , Galinhas/fisiologia , Comércio , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Indústria Alimentícia/instrumentação , Indústria Alimentícia/métodos , Tecnologia de Sensoriamento Remoto/métodos , Vibração
13.
J Air Waste Manag Assoc ; 59(6): 683-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19603736

RESUMO

This paper describes techniques used to determine airflow rate in multiple emission point applications typical of animal housing. An accurate measurement of building airflow rate is critical to accurate emission rate estimates. Animal housing facilities rely almost exclusively on ventilation to control inside climate at desired conditions. This strategy results in building airflow rates that range from about three fresh-air changes per hour in cold weather to more than 100 fresh-air changes per hour in hot weather. Airflow rate measurement techniques used in a comprehensive six-state study could be classified in three general categories: fan indication methods, fan rotational methods, and airspeed measurement methods. Each technique is discussed and implementation plans are noted. A detailed error analysis is included that estimated the uncertainty in airflow rate between +/-5 and +/-6.1% of reading at a building operating static pressure, air temperature, relative humidity, and barometric pressure of 20 Pa, 25 degrees C, 50%, and 97,700 Pa, respectively.


Assuntos
Movimentos do Ar , Abrigo para Animais , Ventilação/instrumentação , Ventilação/métodos , Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Animais , Galinhas , Odorantes , Suínos
14.
J Environ Qual ; 37(6): 2001-11, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18948452

RESUMO

Agricultural activities are an important source of greenhouse gases. However, comprehensive, long-term, and high-quality measurement data of these gases are lacking. This article presents a field study of CH(4) and CO(2) emission from two 1100-head mechanically ventilated pig (Sus scrofa) finishing barns (B1 and B2) with shallow manure flushing systems and propane space heaters from August 2002 to July 2003 in northern Missouri. Barn 2 was treated with soybean oil sprinkling, misting essential oils, and misting essential oils with water to reduce air pollutant emissions. Only days with CDFB (complete-data-full-barn), defined as >80% of valid data during a day with >80% pigs in the barns, were used. The CH(4) average daily mean (ADM) emission rates were 36.2 +/- 2.0 g/d AU (ADM +/- 95% confidence interval; animal unit = 500 kg live mass) from B1 (CDFB days = 134) and 28.8 +/- 1.8 g/d AU from B2 (CDFB days = 131). The CO(2) ADM emission rates were 17.5 +/- 0.8 kg/d AU from B1 (CDFB days = 146) and 14.2 +/- 0.6 kg/d AU from B2 (CDFB days = 137). The treated barn reduced CH(4) emission by 20% (P < 0.01) and CO(2) emission by 19% (P < 0.01). The CH(4) and CO(2) released from the flushing lagoon effluent were equivalent to 9.8 and 4.1% of the CDFB CH(4) and CO(2) emissions, respectively. The emission data were compared with the literature, and the characteristics of CH(4) and CO(2) concentrations and emissions were discussed.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Metano/química , Suínos , Agricultura , Poluição do Ar/prevenção & controle , Animais , Calefação , Abrigo para Animais , Umidade , Esterco/análise , Óleos Voláteis/química , Óleo de Soja/química , Ventilação
15.
J Air Waste Manag Assoc ; 58(6): 806-11, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18581810

RESUMO

Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.


Assuntos
Poluentes Ocupacionais do Ar/análise , Criação de Animais Domésticos , Animais Domésticos , Monitoramento Ambiental/normas , Odorantes/análise , Animais , Interpretação Estatística de Dados , Monitoramento Ambiental/métodos , Humanos , Controle de Qualidade , Olfato , Suínos
16.
J Air Waste Manag Assoc ; 56(10): 1472-83, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17063869

RESUMO

Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Abrigo para Animais , Amônia/análise , Animais , Dióxido de Carbono/análise , Monitoramento Ambiental/instrumentação , Hidrocarbonetos/análise , Sulfeto de Hidrogênio/análise , Metano/análise , Controle de Qualidade , Estados Unidos
17.
J Air Waste Manag Assoc ; 56(5): 581-90, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16739794

RESUMO

It is a common practice in the midwestern United States to raise swine in buildings with under-floor slurry storage systems designed to store manure for up to one year. These so-called "deep-pit" systems are a concentrated source for the emissions of ammonia (NH3), hydrogen sulfide (H2S), and odors. As part of a larger six-state research effort (U.S. Department of Agriculture-Initiative for Future Agriculture and Food Systems Project, "Aerial Pollutant Emissions from Confined Animal Buildings"), realtime NH3 and H2S with incremental odor emission data were collected for two annual slurry removal events. For this study, two 1000-head deep-pit swine finishing facilities in central Iowa were monitored with one-year storage of slurry maintained in a 2.4 m-deep concrete pit (or holding tank) below the animal-occupied zone. Results show that the H2S emission, measured during four independent slurry removal events over two years, increased by an average of 61.9 times relative to the before-removal H2S emission levels. This increase persisted during the agitation process of the slurry that on average occurred over an 8-hr time period. At the conclusion of slurry agitation, the H2S emission decreased by an average of 10.4 times the before-removal emission level. NH3 emission during agitation increased by an average of 4.6 times the before-removal emission level and increased by an average of 1.5 times the before-removal emission level after slurry removal was completed. Odor emission increased by a factor of 3.4 times the before-removal odor emission level and decreased after the slurry-removal event by a factor of 5.6 times the before-removal emission level. The results indicate that maintaining an adequate barn ventilation rate regardless of animal comfort demand is essential to keeping gas levels inside the barn below hazardous levels.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Amônia/análise , Sulfeto de Hidrogênio/análise , Esterco , Suínos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Criação de Animais Domésticos , Animais , Monitoramento Ambiental , Abrigo para Animais , Humanos , Iowa , Exposição Ocupacional , Odorantes/análise , Ventilação
18.
J Air Waste Manag Assoc ; 56(12): 1642-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17195483

RESUMO

Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity.


Assuntos
Poluentes Atmosféricos/análise , Criação de Animais Domésticos , Monitoramento Ambiental/métodos , Abrigo para Animais , Sulfeto de Hidrogênio/análise , Material Particulado/análise , Amônia/análise , Animais , Dióxido de Carbono/análise , Monitoramento Ambiental/instrumentação , Filtração , Umidade , Hidrocarbonetos/análise , Metano/análise , Odorantes/análise , Aves Domésticas , Controle de Qualidade , Projetos de Pesquisa , Suínos , Fatores de Tempo
19.
J Environ Qual ; 32(2): 406-16, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12708662

RESUMO

Odor and gas release from anaerobic lagoons for treating swine waste affect air quality in neighboring communities but rates of release are not well documented. A buoyant convective flux chamber (BCFC) was used to determine the effect of lagoon loading rate on measured odor and gas releases from two primary lagoons at a simulated wind speed of 1.0 m s(-1). Concentrations of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and nitric oxide (NO) in 50-L air samples were measured. A panel of human subjects, whose sensitivity was verified with a certified reference odorant, evaluated odor concentration, intensity, and hedonic tone. Geometric mean odor concentrations of BCFC inlet and outlet samples and of downwind berm samples were 168 +/- 44 (mean +/- 95% confidence interval), 262 +/- 60, and 114 +/- 38 OU(E) m(-3) (OU(E), European odor unit, equivalent to 123 microg n-butanol), respectively. The overall geometric mean odor release was 2.3 +/- 1.5 OU(E) s(-1) m(-2) (1.5 +/- 0.9 OU s(-1) m(-2)). The live mass specific geometric mean odor release was 13.5 OU(E) s(-1) AU(-1) (animal unit = 500 kg live body mass). Overall mean NH3, H2S, CO2 and SO2 releases were 101 +/- 24, 5.7 +/- 2.0, 852 +/- 307, and 0.5 +/- 0.4 microg s(-1) m(-2), respectively. Nitric oxide was not detected. Odor concentrations were directly proportional to H2S and CO2 concentrations and odor intensity, and inversely proportional to hedonic tone and SO2 concentration (P < 0.05). Releases of NH3, H2S, and CO2 were directly proportional (P < 0.05) to volatile solids loading rate (VSLR).


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Bactérias Anaeróbias/fisiologia , Dióxido de Carbono/análise , Sulfeto de Hidrogênio/análise , Esterco , Óxido Nítrico/análise , Odorantes , Dióxido de Enxofre/análise , Animais , Eliminação de Resíduos , Suínos , Volatilização , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA