Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Cell Proteomics ; 23(4): 100742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401707

RESUMO

Therapeutic RNAs are routinely modified during their synthesis to ensure proper drug uptake, stability, and efficacy. Phosphorothioate (PS) RNA, molecules in which one or more backbone phosphates are modified with a sulfur atom in place of standard nonbridging oxygen, is one of the most common modifications because of ease of synthesis and pharmacokinetic benefits. Quality assessment of RNA synthesis, including modification incorporation, is essential for drug selectivity and performance, and the synthetic nature of the PS linkage incorporation often reveals impurities. Here, we present a comprehensive analysis of PS RNA via tandem mass spectrometry (MS). We show that activated ion-negative electron transfer dissociation MS/MS is especially useful in diagnosing PS incorporation, producing diagnostic a- and z-type ions at PS linkage sites, beyond the standard d- and w-type ions. Analysis using resonant and beam-type collision-based activation reveals that, overall, more intense sequence ions and base-loss ions result when a PS modification is present. Furthermore, we report increased detection of b- and x-type product ions at sites of PS incorporation, in addition to the standard c- and y-type ions. This work reveals that the gas-phase chemical stability afforded by sulfur alters RNA dissociation and necessitates inclusion of additional product ions for MS/MS of PS RNA.


Assuntos
RNA , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , RNA/metabolismo , Oligonucleotídeos Fosforotioatos/química
2.
mSystems ; 8(2): e0009223, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36995223

RESUMO

Zymomonas mobilis is an industrially relevant aerotolerant anaerobic bacterium that can convert up to 96% of consumed glucose to ethanol. This highly catabolic metabolism could be leveraged to produce isoprenoid-based bioproducts via the methylerythritol 4-phosphate (MEP) pathway, but we currently have limited knowledge concerning the metabolic constraints of this pathway in Z. mobilis. Here, we performed an initial investigation of the metabolic bottlenecks within the MEP pathway of Z. mobilis using enzyme overexpression strains and quantitative metabolomics. Our analysis revealed that 1-deoxy-d-xylulose 5-phosphate synthase (DXS) represents the first enzymatic bottleneck in the Z. mobilis MEP pathway. DXS overexpression triggered large increases in the intracellular levels of the first five MEP pathway intermediates, of which the buildup in 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) was the most substantial. The combined overexpression of DXS, 4-hydroxy-3-methylbut-2-enyl diphosphate (HMBDP) synthase (IspG), and HMBDP reductase (IspH) mitigated the bottleneck at MEcDP and mobilized carbon to downstream MEP pathway intermediates, indicating that IspG and IspH activity become the primary pathway constraints during DXS overexpression. Finally, we overexpressed DXS with other native MEP enzymes and a heterologous isoprene synthase and showed that isoprene can be used as a carbon sink in the Z. mobilis MEP pathway. By revealing key bottlenecks within the MEP pathway of Z. mobilis, this study will aid future engineering efforts aimed at developing this bacterium for industrial isoprenoid production. IMPORTANCE Engineered microorganisms have the potential to convert renewable substrates into biofuels and valuable bioproducts, which offers an environmentally sustainable alternative to fossil-fuel-derived products. Isoprenoids are a diverse class of biologically derived compounds that have commercial applications as various commodity chemicals, including biofuels and biofuel precursor molecules. Thus, isoprenoids represent a desirable target for large-scale microbial generation. However, our ability to engineer microbes for the industrial production of isoprenoid-derived bioproducts is limited by an incomplete understanding of the bottlenecks in the biosynthetic pathway responsible for isoprenoid precursor generation. In this study, we combined genetic engineering with quantitative analyses of metabolism to examine the capabilities and constraints of the isoprenoid biosynthetic pathway in the industrially relevant microbe Zymomonas mobilis. Our integrated and systematic approach identified multiple enzymes whose overexpression in Z. mobilis results in an increased production of isoprenoid precursor molecules and mitigation of metabolic bottlenecks.


Assuntos
Zymomonas , Zymomonas/genética , Biocombustíveis , Composição de Bases , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/metabolismo , Terpenos/metabolismo , Fosfatos/metabolismo
3.
Nat Biotechnol ; 41(12): 1776-1786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36959352

RESUMO

An average shotgun proteomics experiment detects approximately 10,000 human proteins from a single sample. However, individual proteins are typically identified by peptide sequences representing a small fraction of their total amino acids. Hence, an average shotgun experiment fails to distinguish different protein variants and isoforms. Deeper proteome sequencing is therefore required for the global discovery of protein isoforms. Using six different human cell lines, six proteases, deep fractionation and three tandem mass spectrometry fragmentation methods, we identify a million unique peptides from 17,717 protein groups, with a median sequence coverage of approximately 80%. Direct comparison with RNA expression data provides evidence for the translation of most nonsynonymous variants. We have also hypothesized that undetected variants likely arise from mutation-induced protein instability. We further observe comparable detection rates for exon-exon junction peptides representing constitutive and alternative splicing events. Our dataset represents a resource for proteoform discovery and provides direct evidence that most frame-preserving alternatively spliced isoforms are translated.


Assuntos
Processamento Alternativo , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Peptídeos/química , Sequência de Aminoácidos
4.
Nature ; 606(7913): 382-388, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614220

RESUMO

Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular , Metabolismo Energético , Humanos , Espectrometria de Massas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição , Proteínas rab5 de Ligação ao GTP
5.
Anal Chem ; 94(4): 1965-1973, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044165

RESUMO

While much effort has been placed on comprehensive quantitative proteome analysis, certain applications demand the measurement of only a few target proteins from complex systems. Traditional approaches to targeted proteomics rely on nanoliquid chromatography (nLC) and targeted mass spectrometry (MS) methods, e.g., parallel reaction monitoring (PRM). However, the time requirement for nLC can limit the throughput of targeted proteomics. To achieve rapid and high-throughput targeted methods, here we show that nLC separations can be eliminated and replaced with direct infusion shotgun proteome analysis (DISPA) using high-field asymmetric waveform ion mobility spectrometry (FAIMS) with PRM. We demonstrate the application of DISPA-PRM for rapid targeted quantification of bacterial enzymes utilized in the production of biofuels by monitoring temporal expression in 72 metabolically engineered bacterial cultures in less than 2.5 h, with a measured dynamic range >1200-fold. We conclude that DISPA-PRM presents a valuable innovative tool with results comparable to nLC-MS/MS, enabling fast and rapid detection of targeted proteins in complex mixtures.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Espectrometria de Mobilidade Iônica , Proteoma/análise , Proteômica/métodos
6.
mSystems ; 6(6): e0098721, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34783580

RESUMO

Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.

7.
Anal Chem ; 93(26): 9166-9173, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161073

RESUMO

Post-translational modifications (PTMs) that impact the safety or efficacy of protein therapeutics are critical quality attributes (CQAs) that need to be controlled to ensure product quality. Peptide mapping with online mass spectrometry (MS) is a powerful tool that has been used for many years to monitor PTM CQAs during product development. However, operating peptide mapping methods with high-resolution mass spectrometers in GMP compliant, commercial quality control (QC) labs can be difficult. Peptide mapping is also required as an identity test in several countries. To address these two different needs, we utilized high-resolution peptide mapping for comprehensive characterization during development and then developed and validated a targeted multi-attribute monitoring (MAM) method using the low-resolution Waters QDa MS system with a fully automated data processing workflow that is suitable for identity (ID) testing, sequence variant control, and CQA quantitation in commercial QC labs. The ID-MAM method was validated for the quantitation of three selected PTM CQAs (CDR isomerization, Fc Met oxidation, and CDR Met oxidation) to ensure control of the oxidation and isomerization degradation pathways of a bispecific antibody (BsAb). This ID-MAM method was successfully validated in six labs (three analytical development and three QC labs) across four countries for commercial release and stability testing of a BsAb. CQA results obtained with the ID-MAM method were similar to results obtained using high-resolution peptide mapping, and the method was robust and reproducible. To our knowledge, this ID-MAM method is the first MS-based peptide mapping method implemented in GMP compliant QC labs for commercial release and stability testing of a biotherapeutic.


Assuntos
Processamento de Proteína Pós-Traducional , Cromatografia Líquida , Espectrometria de Massas , Mapeamento de Peptídeos , Controle de Qualidade
8.
Anal Chem ; 93(9): 4217-4222, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33617230

RESUMO

Mass spectrometry (MS) serves as the centerpiece technology for proteome, lipidome, and metabolome analysis. To gain a better understanding of the multifaceted networks of myriad regulatory layers in complex organisms, integration of different multiomic layers is increasingly performed, including joint extraction methods of diverse biomolecular classes and comprehensive data analyses of different omics. Despite the versatility of MS systems, fractured methodology drives nearly all MS laboratories to specialize in analysis of a single ome at the exclusion of the others. Although liquid chromatography-mass spectrometry (LC-MS) analysis is similar for different biomolecular classes, the integration on the instrument level is lagging behind. The recent advancements in high flow proteomics enable us to take a first step towards integration of protein and lipid analysis. Here, we describe a technology to achieve broad and deep coverage of multiple molecular classes simultaneously through multi-omic single-shot technology (MOST), requiring only one column, one LC-MS instrument, and a simplified workflow. MOST achieved great robustness and reproducibility. Its application to a Saccharomyces cerevisiae study consisting of 20 conditions revealed 2842 protein groups and 325 lipids and potential molecular relationships.


Assuntos
Lipidômica , Proteoma , Cromatografia Líquida , Reprodutibilidade dos Testes , Tecnologia
9.
Anal Chem ; 92(24): 15959-15967, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33270415

RESUMO

Mass spectrometry is the premier tool for identifying and quantifying protein phosphorylation on a global scale. Analysis of phosphopeptides requires enrichment, and even after the samples remain highly complex and exhibit broad dynamic range of abundance. Achieving maximal depth of coverage for phosphoproteomics therefore typically necessitates offline liquid chromatography prefractionation, a time-consuming and laborious approach. Here, we incorporate a recently commercialized aerodynamic high-field asymmetric waveform ion mobility spectrometry (FAIMS) device into the phosphoproteomic workflow. We characterize the effects of phosphorylation on the FAIMS separation, describe optimized compensation voltage settings for unlabeled phosphopeptides, and demonstrate the advantages of FAIMS-enabled gas-phase fractionation. Standard FAIMS single-shot analyses identified around 15-20% additional phosphorylation sites than control experiments without FAIMS. In comparison to liquid chromatography prefractionation, FAIMS experiments yielded similar or superior results when analyzing up to four discrete gas-phase fractions. Although using FAIMS led to a modest reduction in the precision of quantitative measurements when using label-free approaches, the data collected with FAIMS yielded a 26% increase in total reproducible measurements. Overall, we conclude that the new FAIMS technology is a valuable addition to any phosphoproteomic workflow, with greater benefits emerging from longer analyses and higher amounts of material.


Assuntos
Espectrometria de Massas/instrumentação , Fosfoproteínas/metabolismo , Proteômica/instrumentação , Sítios de Ligação , Fosforilação , Fluxo de Trabalho
10.
PLoS One ; 15(8): e0226235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797046

RESUMO

Plant-derived fuels and chemicals from renewable biomass have significant potential to replace reliance on petroleum and improve global carbon balance. However, plant biomass contains significant fractions of oligosaccharides that are not usable natively by many industrial microorganisms, including Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis. Even after chemical or enzymatic hydrolysis, some carbohydrate remains as non-metabolizable oligosaccharides (e.g., cellobiose or longer cellulose-derived oligomers), thus reducing the efficiency of conversion to useful products. To begin to address this problem for Z. mobilis, we engineered a strain (Z. mobilis GH3) that expresses a glycosyl hydrolase (GH) with ß-glucosidase activity from a related α-proteobacterial species, Caulobacter crescentus, and subjected it to an adaptation in cellobiose medium. Growth on cellobiose was achieved after a prolonged lag phase in cellobiose medium that induced changes in gene expression and cell composition, including increased expression and extracellular release of GH. These changes were reversible upon growth in glucose-containing medium, meaning they did not result from genetic mutation but could be retained upon transfer of cells to fresh cellobiose medium. After adaptation to cellobiose, our GH-expressing strain was able to convert about 50% of cellobiose to glucose within 24 h and use it for growth and ethanol production. Alternatively, pre-growth of Z. mobilis GH3 in sucrose medium enabled immediate growth on cellobiose. Proteomic analysis of cellobiose- and sucrose-adapted strains revealed upregulation of secretion-, transport-, and outer membrane-related proteins, which may aid release or surface display of GHs, entry of cellobiose into the periplasm, or both. Our two key findings are that Z. mobilis can be reprogrammed to grow on cellobiose as a sole carbon source and that this reprogramming is related to a natural response of Z. mobilis to sucrose that promotes sucrase production.


Assuntos
Celobiose/metabolismo , Zymomonas/crescimento & desenvolvimento , Zymomonas/metabolismo , Adaptação Fisiológica/fisiologia , Biomassa , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Celulose/metabolismo , Expressão Gênica/genética , Glucose/metabolismo , Hidrolases/metabolismo , Proteômica , Sacarase/metabolismo , Sacarose/metabolismo , Zymomonas/genética , beta-Glucosidase/metabolismo
11.
Anal Chem ; 92(6): 4436-4444, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32091202

RESUMO

Modified oligonucleotides represent a promising avenue for drug development, with small interfering RNAs (siRNA) and microRNAs gaining traction in the therapeutic market. Mass spectrometry (MS)-based analysis offers many benefits for characterizing modified nucleic acids. Negative electron transfer dissociation (NETD) has proven valuable in sequencing oligonucleotide anions, particularly because it can retain modifications while generating sequence-informative fragments. We show that NETD can be successfully implemented on a widely available quadrupole-Orbitrap-linear ion trap mass spectrometer that uses a front-end glow discharge source to generate radical fluoranthene reagent cations. We characterize both unmodified and modified ribonucleic acids and present the first application of activated-ion negative electron transfer dissociation (AI-NETD) to nucleic acids. AI-NETD achieved 100% sequence coverage for both a 6-mer (5'-rGmUrArCmUrG-3') with 2'-O-methyl modifications and a 21-mer (5'-rCrArUrCrCrUrCrUrArGrArGrGrArUrArGrArArUrG-3'), the luciferase antisense siRNA. Both NETD and AI-NETD afforded complete sequence coverage of these molecules while maintaining a relatively low degree of undesired base-loss products and internal products relative to collision-based methods.


Assuntos
MicroRNAs/análise , RNA Interferente Pequeno/análise , Sequência de Aminoácidos , Transporte de Elétrons , Espectrometria de Massas
12.
Cell Chem Biol ; 27(3): 350-362.e8, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32017920

RESUMO

Polo-like kinase 1 has hundreds of substrates and multiple functions that operate within the ∼60 min of mitosis. Herein, we describe a chemical-genetic system that allows particular substrates to be "toggled" into or out of chemical control using engineered phosphoacceptor selectivity. Biochemical assays and phosphoproteomic analysis of mitotic cell extracts showed that Plk1S (L197F) and Plk1T (L197S/L211A) selectively phosphorylate Ser and Thr, respectively. Plk1S but not Plk1T sustains mitotic progression to anaphase, affording the opportunity to toggle substrate residues between Ser and Thr to place them under chemical control. Using this system, we evaluated Kif2b, a known substrate of Plk1 that regulates chromosome alignment. Toggling Ser to Thr on Kif2b places these phosphorylation sites under reversible chemical control, as indicated by a sharp increase in the frequency of misaligned chromosomes and prometaphase arrest. Thus, we demonstrate the ability to chemically control a single substrate by a genetic Ser/Thr toggle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina/genética , Treonina/genética , Proteínas de Ciclo Celular/genética , Humanos , Mitose , Fosforilação , Engenharia de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Serina/metabolismo , Especificidade por Substrato , Treonina/metabolismo , Quinase 1 Polo-Like
13.
Front Microbiol ; 10: 2596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787963

RESUMO

Utilization of both C5 and C6 sugars to produce biofuels and bioproducts is a key goal for the development of integrated lignocellulosic biorefineries. Previously we found that although engineered Zymomonas mobilis 2032 was able to ferment glucose to ethanol when fermenting highly concentrated hydrolyzates such as 9% glucan-loading AFEX-pretreated corn stover hydrolyzate (9% ACSH), xylose conversion after glucose depletion was greatly impaired. We hypothesized that impaired xylose conversion was caused by lignocellulose-derived inhibitors (LDIs) in hydrolyzates. To investigate the effects of LDIs on the cellular physiology of Z. mobilis during fermentation of hydrolyzates, including impacts on xylose utilization, we generated synthetic hydrolyzates (SynHs) that contained nutrients and LDIs at concentrations found in 9% ACSH. Comparative fermentations of Z. mobilis 2032 using SynH with or without LDIs were performed, and samples were collected for end product, transcriptomic, metabolomic, and proteomic analyses. Several LDI-specific effects were observed at various timepoints during fermentation including upregulation of sulfur assimilation and cysteine biosynthesis, upregulation of RND family efflux pump systems (ZMO0282-0285) and ZMO1429-1432, downregulation of a Type I secretion system (ZMO0252-0255), depletion of reduced glutathione, and intracellular accumulation of mannose-1P and mannose-6P. Furthermore, when grown in SynH containing LDIs, Z. mobilis 2032 only metabolized ∼50% of xylose, compared to ∼80% in SynH without LDIs, recapitulating the poor xylose utilization observed in 9% ACSH. Our metabolomic data suggest that the overall flux of xylose metabolism is reduced in the presence of LDIs. However, the expression of most genes involved in glucose and xylose assimilation was not affected by LDIs, nor did we observe blocks in glucose and xylose metabolic pathways. Accumulations of intracellular xylitol and xylonic acid was observed in both SynH with and without LDIs, which decreased overall xylose-to-ethanol conversion efficiency. Our results suggest that xylose metabolism in Z. mobilis 2032 may not be able to support the cellular demands of LDI mitigation and detoxification during fermentation of highly concentrated lignocellulosic hydrolyzates with elevated levels of LDIs. Together, our findings identify several cellular responses to LDIs and possible causes of impaired xylose conversion that will enable future strain engineering of Z. mobilis.

14.
Front Microbiol ; 10: 1986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551951

RESUMO

Protein phosphorylation is a post-translational modification with widespread regulatory roles in both eukaryotes and prokaryotes. Using mass spectrometry, we performed a genome wide investigation of protein phosphorylation in the non-model organism and biofuel producer Zymomonas mobilis under anaerobic, aerobic, and N2-fixing conditions. Our phosphoproteome analysis revealed 125 unique phosphorylated proteins, belonging to major pathways such as glycolysis, TCA cycle, electron transport, nitrogen metabolism, and protein synthesis. Quantitative analysis revealed significant and widespread changes in protein phosphorylation across growth conditions. For example, we observed increased phosphorylation of nearly all glycolytic enzymes and a large fraction of ribosomal proteins during aerobic and N2-fixing conditions. We also observed substantial changes in the phosphorylation status of enzymes and regulatory proteins involved in nitrogen fixation and ammonia assimilation during N2-fixing conditions, including nitrogenase, the Rnf electron transport complex, the transcription factor NifA, GS-GOGAT cycle enzymes, and the P II regulatory protein. This suggested that protein phosphorylation may play an important role at regulating all aspects of nitrogen metabolism in Z. mobilis. This study provides new knowledge regarding the specific pathways and cellular processes that may be regulated by protein phosphorylation in this important industrial organism and provides a useful road map for future experiments that investigate the physiological role of specific phosphorylation events in Z. mobilis.

15.
Anal Chem ; 91(20): 12625-12629, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509394

RESUMO

Advances in tandem mass spectrometry (MS/MS) acquisition rate have steadily led to increased performance in shotgun proteomics experiments. To that end, contemporary mass spectrometers are outfitted with multiple analyzers allowing for the simultaneous collection of survey (MS1) and MS/MS spectra. In the latest generation Orbitrap hybrid, MS/MS scans can be acquired at a high rate using the dual cell linear ion trap analyzer, all while the next precursor is being dissociated in a collision cell and a MS1 scan is occurring in the Orbitrap. Often overlooked in these experiments is that the ion trap scan duration is highly variable and dependent upon precursor mass. Here, we examine the use of various static mass-to-charge ratio scan ranges for ion trap MS/MS acquisition and determine performance relative to conventional dynamic mass-to-charge ratio range scanning. We demonstrate that a fixed mass-to-charge ratio scan range can generate 12% more MS/MS scans and more unique peptide identifications as compared to the standard dynamic approach, respectively.


Assuntos
Proteoma/análise , Proteômica/métodos , Cromatografia Líquida de Alta Pressão , Peso Molecular , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos
16.
J Proteome Res ; 18(8): 3166-3173, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31180221

RESUMO

The dependence of capillary zone electrophoresis (CZE) separations on the charge state of the analyte is useful for the analysis of many post-translational modifications in proteins. In this work, we coupled CZE to an Orbitrap Fusion Lumos Tribrid platform with an advanced peak determination algorithm for phosphoproteomics analysis. A linear-polyacrylamide-coated capillary with very low electroosmotic flow was used for the separation. The optimal injection volume was between 100 and 150 nL of a solution of phosphopeptides in 30 mM ammonium bicarbonate (pH 8.2) buffer, which produces a dynamic pH junction sample injection. Larger injection volumes resulted in serious peak broadening and decreased numbers of phosphopeptide identifications. The optimized system identified 4405 phosphopeptides from 220 ng of enriched phosphopeptides from mouse brain, which represents the state-of-the-art result for single-shot CZE-ESI-MS/MS-based phosphoproteome analysis. We found that the migration time for phosphopeptides is much longer than that for non-phosphopeptides and increased along with the number of phosphorylation sites on the peptides, as expected for the additional negative charges associated with the phosphate groups. We also investigated the phosphorylation site motifs; a number of motifs appeared in the CZE-ESI-MS/MS data but not in LC-ESI-MS/MS data, which suggested the complementary performance of the techniques. The data are available via ProteomeXchange with identifier PXD012888.


Assuntos
Eletroforese Capilar , Fosfopeptídeos/isolamento & purificação , Proteômica/métodos , Espectrometria de Massas em Tandem , Algoritmos , Cromatografia Líquida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Fosfopeptídeos/química , Espectrometria de Massas por Ionização por Electrospray
17.
Nat Commun ; 10(1): 1311, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899004

RESUMO

Protein glycosylation is a highly important, yet poorly understood protein post-translational modification. Thousands of possible glycan structures and compositions create potential for tremendous site heterogeneity. A lack of suitable analytical methods for large-scale analyses of intact glycopeptides has limited our abilities both to address the degree of heterogeneity across the glycoproteome and to understand how this contributes biologically to complex systems. Here we show that N-glycoproteome site-specific microheterogeneity can be captured via large-scale glycopeptide profiling methods enabled by activated ion electron transfer dissociation (AI-ETD), ultimately characterizing 1,545 N-glycosites (>5,600 unique N-glycopeptides) from mouse brain tissue. Our data reveal that N-glycosylation profiles can differ between subcellular regions and structural domains and that N-glycosite heterogeneity manifests in several different forms, including dramatic differences in glycosites on the same protein. Moreover, we use this large-scale glycoproteomic dataset to develop several visualizations that will prove useful for analyzing intact glycopeptides in future studies.


Assuntos
Encéfalo/metabolismo , Glicopeptídeos/química , Proteínas do Tecido Nervoso/química , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Proteoma/química , Animais , Química Encefálica , Conjuntos de Dados como Assunto , Feminino , Expressão Gênica , Glicopeptídeos/classificação , Glicopeptídeos/genética , Glicopeptídeos/isolamento & purificação , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteoma/classificação , Proteoma/genética , Proteoma/isolamento & purificação , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
18.
J Proteome Res ; 18(3): 1380-1391, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735395

RESUMO

The brain represents one of the most divergent and critical organs in the human body. Yet, it can be afflicted by a variety of neurodegenerative diseases specifically linked to aging, about which we lack a full biomolecular understanding of onset and progression, such as Alzheimer's disease (AD). Here we provide a proteomic resource comprising nine anatomically distinct sections from three aged individuals, across a spectrum of disease progression, categorized by quantity of neurofibrillary tangles. Using state-of-the-art mass spectrometry, we identify a core brain proteome that exhibits only small variance in expression, accompanied by a group of proteins that are highly differentially expressed in individual sections and broader regions. AD affected tissue exhibited slightly elevated levels of tau protein with similar relative expression to factors associated with the AD pathology. Substantial differences were identified between previous proteomic studies of mature adult brains and our aged cohort. Our findings suggest considerable value in examining specifically the brain proteome of aged human populations from a multiregional perspective. This resource can serve as a guide, as well as a point of reference for how specific regions of the brain are affected by aging and neurodegeneration.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Proteoma/isolamento & purificação , Proteínas tau/isolamento & purificação , Adulto , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/patologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas , Proteoma/genética , Proteômica/métodos , Proteínas tau/genética
19.
mSystems ; 4(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30801024

RESUMO

Zymomonas mobilis is an aerotolerant anaerobe and prolific ethanologen with attractive characteristics for industrial bioproduct generation. However, there is currently insufficient knowledge of the impact that environmental factors have on flux through industrially relevant biosynthetic pathways. Here, we examined the effect of oxygen exposure on metabolism and gene expression in Z. mobilis by combining targeted metabolomics, mRNA sequencing, and shotgun proteomics. We found that exposure to oxygen profoundly influenced metabolism, inducing both transient metabolic bottlenecks and long-term metabolic remodeling. In particular, oxygen induced a severe but temporary metabolic bottleneck in the methyl erythritol 4-phosphate pathway for isoprenoid biosynthesis caused by oxidative damage to the iron-sulfur cofactors of the final two enzymes in the pathway. This bottleneck was resolved with minimal changes in expression of isoprenoid biosynthetic enzymes. Instead, it was associated with pronounced upregulation of enzymes related to iron-sulfur cluster maintenance and biogenesis (i.e., flavodoxin reductase and the suf operon). We also detected major changes in glucose utilization in the presence of oxygen. Specifically, we observed increased gluconate production following exposure to oxygen, accounting for 18% of glucose uptake. Our results suggest that under aerobic conditions, electrons derived from the oxidation of glucose to gluconate are diverted to the electron transport chain, where they can minimize oxidative damage by reducing reactive oxygen species such as H2O2. This model is supported by the simultaneous upregulation of three membrane-bound dehydrogenases, cytochrome c peroxidase, and a cytochrome bd oxidase following exposure to oxygen. IMPORTANCE Microbially generated biofuels and bioproducts have the potential to provide a more environmentally sustainable alternative to fossil-fuel-derived products. In particular, isoprenoids, a diverse class of natural products, are chemically suitable for use as high-grade transport fuels and other commodity molecules. However, metabolic engineering for increased production of isoprenoids and other bioproducts is limited by an incomplete understanding of factors that control flux through biosynthetic pathways. Here, we examined the native regulation of the isoprenoid biosynthetic pathway in the biofuel producer Zymomonas mobilis. We leveraged oxygen exposure as a means to perturb carbon flux, allowing us to observe the formation and resolution of a metabolic bottleneck in the pathway. Our multi-omics analysis of this perturbation enabled us to identify key auxiliary enzymes whose expression correlates with increased production of isoprenoid precursors, which we propose as potential targets for future metabolic engineering.

20.
Metab Eng ; 52: 324-340, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30594629

RESUMO

Efficient microbial production of the next-generation biofuel isobutanol (IBA) is limited by metabolic bottlenecks. Overcoming these bottlenecks will be aided by knowing the optimal ratio of enzymes for efficient flux through the IBA biosynthetic pathway. OptSSeq (Optimization by Selection and Sequencing) accomplishes this goal by tracking growth rate-linked selection of optimal expression elements from a combinatorial library. The 5-step pathway to IBA consists of Acetolactate synthase (AlsS), Keto-acid reductoisomerase (KARI), Di-hydroxy acid dehydratase (DHAD), Ketoisovalerate decarboxylase (Kivd) and Alcohol dehydrogenase (Adh). Using OptSSeq, we identified gene expression elements leading to optimal enzyme levels that enabled theoretically maximal productivities per cell biomass in Escherichia coli. We identified KARI as the rate-limiting step, requiring the highest levels of enzymes expression, followed by AlsS and AdhA. DHAD and Kivd required relatively lower levels of expression for optimal IBA production. OptSSeq also enabled the identification of an Adh enzyme variant capable of an improved rate of IBA production. Using models that predict impacts of enzyme synthesis costs on cellular growth rates, we found that optimum levels of pathway enzymes led to maximal IBA production, and that additional limitations lie in the E. coli metabolic network. Our optimized constructs enabled the production of ~3 g IBA per hour per gram dry cell weight and was achieved with 20 % of the total cell protein devoted to IBA-pathway enzymes in the molar ratio 2.5:6.7:2:1:5.2 (AlsS:IlvC:IlvD:Kivd:AdhA). These enzyme levels and ratios optimal for IBA production in E. coli provide a useful starting point for optimizing production of IBA in diverse microbes and fermentation conditions.


Assuntos
Butanóis/metabolismo , Engenharia Metabólica/métodos , Anaerobiose , Biocombustíveis , Biomassa , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA