Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Int J Food Microbiol ; 422: 110813, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38970997

RESUMO

Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.

2.
J Am Chem Soc ; 146(26): 17613-17617, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885442

RESUMO

Synthesis of high-entropy oxide (HEO) nanocrystals has focused on increasing the temperature in the entropy term (T(ΔS)) to overcome the enthalpy term. However, these high temperatures lead to large, polydisperse nanocrystals. In this work, we leverage the low solubility product (Ksp) of metal oxides and optimize the Lewis-acid-catalyzed esterification reaction for equal rate production of the cation monomers to synthesize HEO nanocrystals at low temperatures, producing the smallest (<4 nm) and most monodisperse (<15% size dispersity) HEOs to date. We apply these HEO nanocrystals as electrocatalysts, exhibiting promising activity toward the oxygen evolution reaction in alkaline media, with an overpotential of 345 mV at 10 mA/cm2.

3.
J Am Chem Soc ; 146(23): 15926-15940, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820130

RESUMO

Ammonia electrooxidation has received considerable attention in recent times due to its potential application in direct ammonia fuel cells, ammonia sensors, and denitrification of wastewater. In this work, we used differential electrochemical mass spectrometry (DEMS) coupled with attenuated total reflection-surface-enhanced infrared absorption (ATR-SEIRA) spectroscopy to study adsorbed species and solution products during the electrochemical ammonia oxidation reaction (AOR) on Pt in alkaline media, and to correlate the product distribution with the surface ad-species. Hydrazine electrooxidation, hydroxylamine electrooxidation/reduction, and nitrite electroreduction on Pt have also been studied to enhance the understanding of the AOR mechanism. NH3, NH2, NH, NO, and NO2 ad-species were identified on the Pt surface with ATR-SEIRA spectroscopy, while N2, N2O, and NO were detected with DEMS as products of the AOR. N2 is formed through the coupling of two NH ad-species and then subsequent further dehydrogenation, while the dimerization of HNOad leads to the formation of N2O. The NH-NH coupling is the rate-determining step (rds) at high potentials, while the first dehydrogenation step is the rds at low potentials. These new spectroscopic results about the AOR and insights could advance the search and design of more effective AOR catalysts.

4.
Data Brief ; 54: 110480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725554

RESUMO

Roselle (Hibiscus sabdariffa L.) is a worldwide known species of great importance due to its medicinal properties and pleasant flavor. In Paraguay, it is used as an alternative crop by family-run farmers; however, the varieties used in the country are unknown, so no information is available on this crop. The qualitative characterization would collect knowledge serving as a basis for the registration of varieties produced in Paraguay. In addition, such data are useful for future genetic improvement programs considering this crop. The present work was carried out at the Multidisciplinary Center for Technological Research and the experimental farmland of the Faculty of Agricultural Sciences of the National University of Asuncion, during the years 2022 and 2023. The main objective was to carry out a morphological characterization of four Roselle varieties: Ana Delia, Benito, Dogo, and Creole. The design consisted of completely randomized blocks, with four treatments (varieties) and four replications; each experimental unit (block) was composed of 24 plants, distributed in four rows; 12 plants, selected from the central rows, were harvested for the evaluations. Stem color, leaf shape, leaf margin, rib color, petiole color, flower color, calyx color, calyx sepal opening, capsule shape, capsule color, capsule anthocyanin coloration, and pubescence level were evaluated. The results demonstrate qualitative differences between the varieties, which help to compare and classify them for a better variety selection.

5.
Food Microbiol ; 121: 104531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637091

RESUMO

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Assuntos
Queijo , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Staphylococcus aureus/genética , Queijo/microbiologia , Brasil , Microbiologia de Alimentos , Aço Inoxidável/análise , Enterotoxinas/genética , Leite/microbiologia
6.
ACS Appl Mater Interfaces ; 16(19): 25432-25444, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688003

RESUMO

Encapsulating an electrocatalytic material with a semipermeable, nanoscopic oxide overlayer offers a promising approach to enhancing its stability, activity, and/or selectivity compared to an unencapsulated electrocatalyst. However, applying nanoscopic oxide encapsulation layers to high-surface-area electrodes such as nanoparticle-supported porous electrodes is a challenging task. This study demonstrates that the recently developed condensed layer deposition (CLD) method can be used for depositing nanoscopic (sub-10 nm thick) titanium dioxide (TiO2) overlayers onto high-surface-area platinized carbon foam electrodes. Characterization of the overlayers by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) showed that the films are amorphous, while X-ray photoelectron spectroscopy confirmed that they exhibit TiO2 stoichiometry. Electrodes were also characterized by hydrogen underpotential deposition (Hupd) and carbon monoxide (CO) stripping, demonstrating that the Pt electrocatalysts remain electrochemically active after encapsulation. Additionally, copper underpotential deposition (Cuupd) measurements revealed that TiO2 overlayers are effective at blocking Cu2+ from reaching the TiO2/Pt buried interface and were used to estimate that between 43 and 98% of Pt surface sites were encapsulated. Overall, this study shows that CLD is a promising approach for depositing nanoscopic protective overlayers on high-surface-area electrodes.

7.
J Am Chem Soc ; 146(7): 4680-4686, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324776

RESUMO

Precious-metal-free spinel oxide electrocatalysts are promising candidates for catalyzing the oxygen reduction reaction (ORR) in alkaline fuel cells. In this theory-driven study, we use joint density functional theory (JDFT) in tandem with supporting electrochemical measurements to identify a novel theoretical pathway for the ORR on cubic Co3O4 nanoparticle electrocatalysts, which aligns more closely with experimental results than previous models. The new pathway employs the cracked adsorbates *(OH)(O) and *(OH)(OH), which, through hydrogen bonding, induce spectator surface *H. This results in an onset potential closely matching experimental values, in stark contrast to the traditional ORR pathway, which keeps adsorbates intact and overestimates the onset potential by 0.7 V. Finally, we introduce electrochemical strain spectroscopy (ESS), a groundbreaking strain analysis technique. ESS combines ab initio calculations with experimental measurements to validate the proposed reaction pathways and pinpoint rate-limiting steps.

8.
J Am Chem Soc ; 146(4): 2593-2603, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235653

RESUMO

Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.

9.
J Med Case Rep ; 18(1): 12, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195538

RESUMO

BACKGROUND: Intravesical Bacillus Calmette-Guérin (BCG) is used as a standard adjuvant therapy for non-muscle invasive urothelial cancer. Most patients tolerate the treatment well, with mild side effects. Systemic complications are extremely rare, occur due to BCG dissemination and are associated with immunocompromised state and urothelial breach. CASE PRESENTATION: We present a case of a 78-year-old male, a former smoker, with history of non-muscle invasive urothelial carcinoma status post partial resection followed by intravesical BCG therapy. An autopsy was performed due to the sudden nature of his death. Autopsy showed multiple necrotizing granulomas in the brain, atrium, ventricles, lungs, kidneys, and urinary bladder. Stains for acid-fast bacilli and fungi were negative. In addition, bilateral lungs showed evidence of bronchopneumonia secondary to cytomegalovirus. CONCLUSION: Granulomatous myocarditis arising from BCG therapy is extremely rare. Our patient with urothelial cancer treated with BCG developed multiorgan granulomas, most likely due to a hypersensitivity reaction to intravesical BCG. Arrhythmia induced by granulomatous myocarditis was the cause of his death. Although there have been few cases of systemic BCG-osis causing fatal sepsis leading to death, a cardiac cause of death is unique.


Assuntos
Vacina BCG , Carcinoma de Células de Transição , Miocardite , Neoplasias da Bexiga Urinária , Idoso , Humanos , Masculino , Autopsia , Vacina BCG/efeitos adversos , Carcinoma de Células de Transição/tratamento farmacológico , Granuloma/induzido quimicamente , Miocardite/induzido quimicamente , Neoplasias da Bexiga Urinária/tratamento farmacológico , Evolução Fatal
10.
MethodsX ; 11: 102490, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098768

RESUMO

This paper presents a tutorial for the germination of bean seeds (Vigna unguiculata L. Walp.) in strong electrostatic fields up to 1240 V/cm. The seeds were allowed to germinate under different electric field strengths for 48 h. Although most of such germination experiments did not show any visible effect, the field strength of 945 V/cm strongly increased the seedling's vigor during the early growth stage. In the end, 30 % more yield was obtained from stimulated seeds when compared to the control group. This article postulates for the first time a hypothesis of the mechanism of action of the electric field during germination. In biological cells of any species, water confined between narrow surfaces can undergo a phase transition that shifts its melting point to higher temperatures when an external electric field is applied. This effect has already been known as electrofreezing, and has been confirmed by several experimental and molecular modeling studies. As a consequence, the transport kinetics of molecules across cell organelle membranes might be altered, which in turn leads to different plant properties. With emphasis on the presented method, this work reports: •An inexpensive electric circuit for the generation of strong electric fields•Instructions regarding the setup and operation of an adequate germination chamber.

11.
Chem Sci ; 14(38): 10429-10434, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800009

RESUMO

Anion exchange membrane fuel cells (AEMFCs) that operate at high pH, offer the advantage of enabling the use of abundant 3d-transition metal-based electrocatalysts. While they have shown remarkable improvement in performance, their long-term durability remains insufficient for practical applications with the alkaline polymer electrolytes (APEs) being the limiting factor. The stability of APEs is generally evaluated in concentrated alkaline solutions, which overlooks/oversimplifies the complex electrochemical environment of the catalyst layer in membrane electrode assembly (MEA) devices. Herein, we report a study of the degradation of the membrane and ionomer independently under realistic H2-air (CO2 free) fuel cell operation, using proton nuclear magnetic resonance (1H-NMR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). While the membrane degradation was minimal after the AEMFC stability test, the ionomer in the catalyst layers degraded approximately 20% to 30% with the cathode being more severely affected than the anode. The ionomer degradation decreased the catalyst utilization and significantly increased the ionic resistance, leading to significant performance degradation in the AEMFC stability test. These findings emphasize the importance of ionomer stability and the need to consider the electrochemical environments of MEAs when evaluating the stability of APEs.

12.
ACS Nano ; 17(18): 18402-18410, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37717254

RESUMO

The polysulfide shuttle contributes to capacity loss in lithium-sulfur batteries, which limits their practical utilization. Materials that catalyze the complex redox reactions responsible for the polysulfide shuttle are emerging, but foundational knowledge that enables catalyst development remains limited with only a small number of catalysts identified. Here, we employ a rigorous electrochemical approach to show quantitatively that the lithium polysulfide redox reaction is catalyzed by nanoparticles of a high entropy sulfide material, Zn0.30Co0.31Cu0.19In0.13Ga0.06S. When 2% by weight of the high entropy sulfide is added to the lithium sulfur cathode composite, the capacity and Coulombic efficiency of the resulting battery are improved at both moderate (0.2 C) and high (1 C) charge/discharge rates. Surface analysis of the high entropy sulfide nanoparticles using X-ray photoelectron spectroscopy provides important insights into how the material evolves during the cycling process. The Zn0.30Co0.31Cu0.19In0.13Ga0.06S nanoparticle catalyst outperformed the constituent metal sulfides, pointing to the role that the high-entropy "cocktail effect" can play in the development of advanced electrocatalytic materials for improved lithium sulfur battery performance.

13.
ACS Appl Mater Interfaces ; 15(40): 47692-47703, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751476

RESUMO

The solid electrolyte interphase (SEI) dictates the stability and cycling performance of highly reactive battery electrodes. Characterization of the thin, dynamic, and environmentally sensitive nature of the SEI presents a formidable challenge, which calls for the use of microscopic, time-resolved operando methods. Herein, we employ scanning electrochemical microscopy (SECM) to directly probe the heterogeneous surface electronic conductivity during SEI formation and degradation. Complementary operando electrochemical quartz crystal microbalance (EQCM) and ex situ X-ray photoelectron spectroscopy (XPS) provide comprehensive analysis of the dynamic size and compositional evolution of the complex interfacial microstructure. We have found that stable anode passivation occurs at potentials of 0.5 V vs Li/Li+, even in cases where anion decomposition and interphase formation occur above 1.0 V. We investigated the bidirectional relationship between the SEI and lithium plating-stripping, finding that plating-stripping ruptures the SEI. The current efficiency of this reaction is correlated to the anodic stability of the SEI, highlighting the interdependent relationship between the two. We anticipate this work will provide critical insights on the rational design of stable and effective SEI layers for safe, fast-charging, and long-lifetime lithium metal batteries.

14.
J Am Chem Soc ; 145(31): 17406-17419, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525439

RESUMO

While certain ternary spinel oxides have been well-explored with colloidal nanochemistry, notably the ferrite spinel family, ternary manganese (Mn)-based spinel oxides have not been tamed. A key composition is cobalt (Co)-Mn oxide (CMO) spinel, CoxMn3-xO4, that, despite exemplary performance in multiple electrochemical applications, has few reports in the colloidal literature. Of these reports, most show aggregated and polydisperse products. Here, we describe a synthetic method for small, colloidally stable CMO spinel nanocrystals with tunable composition and low dispersity. By reacting 2+ metal-acetylacetonate (M(acac)2) precursors in an amine solvent under an oxidizing environment, we developed a pathway that avoids the highly reducing conditions of typical colloidal synthesis reactions; these reducing conditions typically push the system toward a monoxide impurity phase. Through surface chemistry studies, we identify organic byproducts and their formation mechanism, enabling us to engineer the surface and obtain colloidally stable nanocrystals with low organic loading. We report a CMO/carbon composite with low organic contents that performs the oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.87 V vs RHE in 1.0 M potassium hydroxide at 1600 rpm, rivaling previous reports for the highest activity of this material in ORR electrocatalysis. We extend the general applicability of this procedure to other Mn-based spinel nanocrystals such as Zn-Mn-O, Fe-Mn-O, Ni-Mn-O, and Cu-Mn-O. Finally, we show the scalability of this method by producing inorganic nanocrystals at the gram scale.

17.
Sci Adv ; 9(33): eadi5108, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585528

RESUMO

Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt's oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.

18.
J Am Chem Soc ; 145(33): 18439-18446, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552880

RESUMO

OH adspecies are involved in numerous electrocatalytic reactions, such as CO, H2, methanol, and ethanol oxidation and oxygen reduction reactions, as a reaction intermediate and/or reactant. In this work, we have, for the first time, identified the OH stretching band of OH adspecies on Pt, Ru, and Pt/Ru electrodes with surface-enhanced infrared absorption spectroscopy (SEIRAS) in a flow cell through potential modulation and CO displacement. We found that while Ru had a relatively constant OH coverage at potentials between 0.1 and 0.8 V, Pt had a maximum OH coverage at 0.6 V in 0.1 M HClO4 and 0.7 V in 0.1 M KOH. CO oxidation kinetics on Ru were sluggish, although adsorbed OH appeared on Ru at very low potentials. Binary Pt/Ru electrodes promote CO oxidation through a synergistic effect in which Ru promotes OH adsorption and Pt catalyzes the reaction between the CO and OH adspecies. In addition, water coadsorbed with CO at Ru sites of Pt/Ru also plays an important role. These new spectroscopic results about OH adspecies could advance the understanding of the mechanism of fuel cell related electrocatalysis.

19.
Nano Lett ; 23(14): 6637-6644, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37406363

RESUMO

High-entropy alloy (HEA) nanoparticles are promising catalyst candidates for the acidic oxygen evolution reaction (OER). Herein, we report the synthesis of IrFeCoNiCu-HEA nanoparticles on a carbon paper substrate via a microwave-assisted shock synthesis method. Under OER conditions in 0.1 M HClO4, the HEA nanoparticles exhibit excellent activity with an overpotential of ∼302 mV measured at 10 mA cm-2 and improved stability over 12 h of operation compared to the monometallic Ir counterpart. Importantly, an active Ir-rich shell layer with nanodomain features was observed to form on the surface of IrFeCoNiCu-HEA nanoparticles immediately after undergoing electrochemical activation, mainly due to the dissolution of the constituent 3d metals. The core of the particles was able to preserve the characteristic homogeneous single-phase HEA structure without significant phase separation or elemental segregation. This work illustrates that under acidic operating conditions, the near-surface structure of HEA nanoparticles is susceptible to a certain degree of structural dynamics.

20.
Chemistry ; 29(61): e202301547, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37377132

RESUMO

Singlet fission is a phenomenon that could significantly improve the efficiency of photovoltaic devices. Indolonaphthyridine thiophene (INDT) is a photostable singlet fission material that could potentially be utilised in singlet fission-based photovoltaic devices. This study investigates the intramolecular singlet fission (i-SF) mechanism of INDT dimers linked via para-phenyl, meta-phenyl and fluorene bridging groups. Using ultra-fast spectroscopy the highest rate of singlet fission is found in the para-phenyl linked dimer. Quantum calculations show the para-phenyl linker encourages enhanced monomer electronic coupling. Increased rates of singlet fission were also observed in the higher polarity o-dichlorobenzene, relative to toluene, indicating that charge-transfer states have a role in mediating the process. The mechanistic picture of polarisable singlet fission materials, such as INDT, extends beyond the traditional mechanistic landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA