Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 50(14): 7801-7815, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35253883

RESUMO

Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.


Centromeres are essential chromosomal regions that do not encode gene products and instead ensure the accurate partitioning of chromosomes during cell division. Despite the lack of genes, transcription has been detected at centromeres. It has not been clear where this centromeric RNA comes from and how it is regulated. In this study, the authors identified all of the centromeric RNAs at and around budding yeast centromeres during the cell cycle. Unlike RNAs that encode for proteins, centromeric RNAs are a complex mixture of transcripts that result from adjacent RNAs that continue into the centromere. The authors found that most transcription is blocked at the centromere border by a protein called Cbf1. This mechanism shields the centromere from untimely transcription to ensure genome stability.


Assuntos
Centrômero , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Centrômero/genética , Centrômero/metabolismo , Segregação de Cromossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739170

RESUMO

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Assuntos
Complexo de Endopeptidases do Proteassoma , RNA Satélite , Centrômero/genética , Centrômero/metabolismo , DNA Satélite/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Satélite/genética , Regulação para Cima
3.
Cell Death Dis ; 12(10): 896, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599155

RESUMO

Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.


Assuntos
Proteína BRCA1/metabolismo , Centrômero/metabolismo , Estruturas R-Loop , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Satélite/genética , Humanos , Modelos Biológicos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética/genética
4.
Prog Mol Subcell Biol ; 60: 169-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386876

RESUMO

Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.


Assuntos
Centrômero , Cromatina , Centrômero/genética , Proteína Centromérica A/genética , Cinetocoros , Transcrição Gênica/genética
5.
Sci Rep ; 7: 42520, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186195

RESUMO

Centromeres are chromosomal domains essential for genomic stability. We report here the remarkable transcriptional and epigenetic perturbations at murine centromeres in genotoxic stress conditions. A strong and selective transcriptional activation of centromeric repeats is detected within hours. This is followed by disorganization of centromeres with striking delocalization of nucleosomal CENP-A, the key determinant of centromere identity and function, in a mechanism requiring active transcription of centromeric repeats, the DNA Damage Response (DDR) effector ATM and chromatin remodelers/histone chaperones. In the absence of p53 checkpoint, activated transcription of centromeric repeats and CENP-A delocalization do not occur and cells accumulate micronuclei indicative of genomic instability. In addition, activated transcription and loss of centromeres identity are features of permanently arrested senescent cells with persistent DDR activation. Together, these findings bring out cooperation between DDR effectors and loss of centromere integrity as a safeguard mechanism to prevent genomic instability in context of persistent DNA damage signalling.


Assuntos
Senescência Celular/genética , Proteína Centromérica A/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Estresse Fisiológico/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Dano ao DNA , DNA Satélite , Histonas/metabolismo , Camundongos , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
6.
Orphanet J Rare Dis ; 9: 56, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24742017

RESUMO

BACKGROUND: Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. METHOD: We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. RESULTS: We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. CONCLUSIONS: Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust biomarkers identified in this study could be introduced into routine clinical immunology or neurology departments to facilitate testing of patients with suspected ICF syndrome. In addition, as exemplified by two patients with a combination of molecular defects never described before, our data support the search for new types of mutations at the origin of ICF syndrome.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica , Células Germinativas , Mutação em Linhagem Germinativa , Síndromes de Imunodeficiência/genética , Animais , Proteínas de Transporte/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feminino , Humanos , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/diagnóstico , Masculino , Camundongos , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Fatores de Transcrição
7.
PLoS One ; 5(5): e10504, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20498699

RESUMO

BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6) times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Insulisina/antagonistas & inibidores , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HeLa , Humanos , Insulisina/química , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA