Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38373658

RESUMO

PURPOSE: Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier. METHODS AND MATERIALS: Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy). We measured vessel permeability to molecules of 3 sizes (Gd-DOTA, Dotarem, 0.56 kDa; gadolinium-labeled albumin, ∼74 kDa; and gadolinium-labeled IgG, 160 kDa) by daily in vivo magnetic resonance imaging, from 1 day before to 10 days after irradiation. RESULTS: An equivalent tumor dose of bidirectional MRT delivered from 2 orthogonal directions increased tumor vessel permeability for the smallest molecule tested more effectively than unidirectional MRT. Bidirectional MRT also affected the permeability of normal contralateral vessels to a different extent than unidirectional MRT. Conversely, bidirectional MRT did not modify the permeability of normal or tumor vessels for both larger molecules (74 and 160 kDa). CONCLUSIONS: High-dose bidirectional (cross-fired) MRT induced a significant increase in tumor vessel permeability for small molecules between the first and the seventh day after irradiation, whereas permeability of vessels in normal brain tissue remained stable. Such a permeability window could facilitate an efficient and safe delivery of intravenous small molecules (≤0.56 kDa) to tumoral tissues. A permeability window was not achieved by molecules larger than gado-grafted albumin (74 kDa). Vascular permeability for molecules between these 2 sizes has not been determined.

2.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31363758

RESUMO

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Assuntos
Encéfalo/anormalidades , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Immunoblotting , Imageamento por Ressonância Magnética , Camundongos , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismo
3.
Science ; 358(6369): 1448-1453, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29146868

RESUMO

Reversible detyrosination of α-tubulin is crucial to microtubule dynamics and functions, and defects have been implicated in cancer, brain disorganization, and cardiomyopathies. The identity of the tubulin tyrosine carboxypeptidase (TCP) responsible for detyrosination has remained unclear. We used chemical proteomics with a potent irreversible inhibitor to show that the major brain TCP is a complex of vasohibin-1 (VASH1) with the small vasohibin binding protein (SVBP). VASH1 and its homolog VASH2, when complexed with SVBP, exhibited robust and specific Tyr/Phe carboxypeptidase activity on microtubules. Knockdown of vasohibins or SVBP and/or inhibitor addition in cultured neurons reduced detyrosinated α-tubulin levels and caused severe differentiation defects. Furthermore, knockdown of vasohibins disrupted neuronal migration in developing mouse neocortex. Thus, vasohibin/SVBP complexes represent long-sought TCP enzymes.


Assuntos
Proteínas Angiogênicas/metabolismo , Carboxipeptidases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurogênese , Neurônios/citologia , Tirosina/metabolismo , Proteínas Angiogênicas/genética , Animais , Carboxipeptidases/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Movimento Celular , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/enzimologia , Proteômica , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA