Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464315

RESUMO

Effective anti-tumor immunity is largely driven by cytotoxic CD8+ T cells that can specifically recognize tumor antigens. However, the factors which ultimately dictate successful tumor rejection remain poorly understood. Here we identify a subpopulation of CD8+ T cells which are tumor antigen-specific in patients with melanoma but resemble KIR+CD8+ T cells with a regulatory function (Tregs). These tumor antigen-specific KIR+CD8+ T cells are detectable in both the tumor and the blood, and higher levels of this population are associated with worse overall survival. Our findings therefore suggest that KIR+CD8+ Tregs are tumor antigen-specific but uniquely suppress anti-tumor immunity in patients with melanoma.

2.
Mucosal Immunol ; 15(4): 656-667, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35589985

RESUMO

Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.


Assuntos
NF-kappa B , Fatores de Transcrição , Animais , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo
3.
Sci Adv ; 8(17): eabl5394, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486722

RESUMO

Understanding peptide presentation by specific MHC alleles is fundamental for controlling physiological functions of T cells and harnessing them for therapeutic use. However, commonly used in silico predictions and mass spectroscopy have their limitations in precision, sensitivity, and throughput, particularly for MHC class II. Here, we present MEDi, a novel mammalian epitope display that allows an unbiased, affordable, high-resolution mapping of MHC peptide presentation capacity. Our platform provides a detailed picture by testing every antigen-derived peptide and is scalable to all the MHC II alleles. Given the urgent need to understand immune evasion for formulating effective responses to threats such as SARS-CoV-2, we provide a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of several HLA class II alleles. We show that several mutations arising in viral strains expanding globally resulted in reduced peptide presentability by multiple HLA class II alleles, while some increased it, suggesting alteration of MHC II presentation landscapes as a possible immune escape mechanism.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe II , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II/genética , Mamíferos , Peptídeos , SARS-CoV-2
4.
Eur J Immunol ; 49(5): 709-723, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30802940

RESUMO

Antioxidant systems maintain cellular redox homeostasis. The thioredoxin-1 (Trx1) and the glutathione (GSH)/glutaredoxin-1 (Grx1) systems are key players in preserving cytosolic redox balance. In fact, T lymphocytes critically rely on reducing equivalents from the Trx1 system for DNA biosynthesis during metabolic reprogramming upon activation. We here show that the Trx1 system is also indispensable for development and functionality of marginal zone (MZ) B cells and B1 cells in mice. In contrast, development of conventional B cells, follicular B-cell homeostasis, germinal center reactions, and antibody responses are redundantly sustained by both antioxidant pathways. Proliferating B2 cells lacking Txnrd1 have increased glutathione (GSH) levels and upregulated cytosolic Grx1, which is barely detectable in expanding thymocytes. These results suggest that the redox capacity driving proliferation is more robust and flexible in B cells than in T cells, which may have profound implications for the therapy of B and T-cell neoplasms.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Glutarredoxinas/genética , Tiorredoxinas/genética , Animais , Linfócitos B/citologia , Biomarcadores , Proliferação de Células/genética , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Glutarredoxinas/metabolismo , Camundongos , Camundongos Transgênicos , Tiorredoxinas/metabolismo
5.
Nat Commun ; 9(1): 1851, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749372

RESUMO

The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4-CD8- thymocyte population, whereas Txnrd1 deletion in CD4+CD8+ thymocytes does not affect further maturation and peripheral homeostasis of αßT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia.


Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células/fisiologia , Reprogramação Celular/fisiologia , DNA/biossíntese , Linfócitos T/fisiologia , Tiorredoxina Redutase 1/fisiologia , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiologia , Animais , Transplante de Medula Óssea , Linhagem Celular , Desoxirribonucleotídeos/biossíntese , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quimeras de Transplante
6.
Eur J Immunol ; 41(7): 2040-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21484785

RESUMO

Oxidative stress and inflammation--two components of the natural host response to injury--constitute important etiologic factors in atherogenesis. The pro-inflammatory cytokine interleukin (IL)-1 significantly enhances atherosclerosis, however, the molecular mechanisms of IL-1 induction within the artery wall remain poorly understood. Here we have identified the oxidative stress-responsive transcription factor NF-E2-related 2 (Nrf2) as an essential positive regulator of inflammasome activation and IL-1-mediated vascular inflammation. We show that cholesterol crystals, which accumulate in atherosclerotic plaques, represent an endogenous danger signal that activates Nrf2 and the NLRP3 inflammasome. The resulting vigorous IL-1 response critically depended on expression of Nrf2, and Nrf2-deficient apolipoprotein E (Apoe)-/- mice were highly protected against diet-induced atherogenesis. Importantly, therapeutic neutralization of IL-1α and IL-1ß reduced atherosclerosis in Nrf2+/- Apoe-/- but not in Nrf2-/- Apoe-/- mice, suggesting that the pro-atherogenic effect of Nrf2-signaling was primarily mediated by its permissive role in IL-1 production. Our studies demonstrate a role for Nrf2 in inflammasome activation, and identify cholesterol crystals as disease-relevant triggers of the NLRP3 inflammasome and potent pro-atherogenic cytokine responses. These findings suggest a common pathway through which oxidative stress and metabolic danger signals converge and mutually perpetuate the chronic vascular inflammation that drives atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Colesterol/química , Cristalização , Células Dendríticas/metabolismo , Células Espumosas/metabolismo , Interleucina-1/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Placa Aterosclerótica/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA