Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Rep ; 43(3): 113869, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431843

RESUMO

Autoimmune diseases strain healthcare systems worldwide as their incidence rises, and current treatments put patients at risk for infections. An increased understanding of autoimmune diseases is required to develop targeted therapies that do not impair normal immune function. Many autoimmune diseases present with autoantibodies, which drive local or systemic inflammation. This indicates the presence of autoreactive B cells that have escaped tolerance. An important step in the development of autoreactive B cells is the germinal center (GC) reaction, where they undergo affinity maturation toward cognate self-antigen. Follicular dendritic cells (FDCs) perform the essential task of antigen presentation to B cells during the affinity maturation process. However, in recent years, it has become clear that FDCs play a much more active role in regulation of GC processes. Here, we evaluate the biology of FDCs in the context of autoimmune disease, with the goal of informing future therapeutic strategies.


Assuntos
Doenças Autoimunes , Células Dendríticas Foliculares , Humanos , Autoimunidade , Centro Germinativo , Linfócitos B
2.
STAR Protoc ; 4(3): 102404, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392392

RESUMO

In this protocol, we detail how to isolate and purify human follicular dendritic cells (FDCs) from lymphoid tissues. FDCs play a vital role in antibody development by presenting antigens to B cells in germinal centers. The assay involves enzymatic digestion and fluorescence-activated cell sorting and is successfully applied to various lymphoid tissues, including tonsils, lymph nodes, and tertiary lymphoid structures. Our robust technique enables the isolation of FDCs and facilitates downstream functional and descriptive assays. For complete details on the use and execution of this protocol, please refer to Heesters et al.1.


Assuntos
Células Dendríticas Foliculares , Centro Germinativo , Humanos , Linfonodos , Linfócitos B , Citometria de Fluxo
3.
ACS Chem Biol ; 18(5): 1180-1191, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37104622

RESUMO

SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan binding cleft. However, for the SARS-CoV-2 NTD, protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of variants of concern (VoC) show antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, alpha, beta, delta, and omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9-O-acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity toward 9-O-acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells.


Assuntos
COVID-19 , Ácidos Siálicos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ácido N-Acetilneuramínico
4.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543378

RESUMO

BACKGROUND: The immunogenic nature of metastatic colorectal cancer (CRC) with high microsatellite instability (MSI-H) underlies their responsiveness to immune checkpoint blockade (ICB). However, resistance to ICB is commonly observed, and is associated with the presence of peritoneal-metastases and ascites formation. The mechanisms underlying this site-specific benefit of ICB are unknown. METHODS: We created a novel model for spontaneous multiorgan metastasis in MSI-H CRC tumors by transplanting patient-derived organoids (PDO) into the cecum of humanized mice. Anti-programmed cell death protein-1 (PD-1) and anti-cytotoxic T-lymphocytes-associated protein 4 (CTLA-4) ICB treatment effects were analyzed in relation to the immune context of primary tumors, liver metastases, and peritoneal metastases. Immune profiling was performed by immunohistochemistry, flow cytometry and single-cell RNA sequencing. The role of B cells was assessed by antibody-mediated depletion. Immunosuppressive cytokine levels (interleukin (IL)-10, transforming growth factor (TGF)b1, TGFb2, TGFb3) were determined in ascites and serum samples by ELISA. RESULTS: PDO-initiated primary tumors spontaneously metastasized to the liver and the peritoneum. Peritoneal-metastasis formation was accompanied by the accumulation of ascites. ICB completely cleared liver metastases and reduced primary tumor mass but had no effect on peritoneal metastases. This mimics clinical observations. After therapy discontinuation, primary tumor masses progressively decreased, but peritoneal metastases displayed unabated growth. Therapy efficacy correlated with the formation of tertiary lymphoid structures (TLS)-containing B cells and juxtaposed T cells-and with expression of an interferon-γ signature together with the B cell chemoattractant CXCL13. B cell depletion prevented liver-metastasis clearance by anti-CTLA-4 treatment. Peritoneal metastases were devoid of B cells and TLS, while the T cells in these lesions displayed a dysfunctional phenotype. Ascites samples from patients with cancer with peritoneal metastases and from the mouse model contained significantly higher levels of IL-10, TGFb1, TGFb2 and TGFb3 than serum samples. CONCLUSIONS: By combining organoid and humanized mouse technologies, we present a novel model for spontaneous multiorgan metastasis by MSI-H CRC, in which the clinically observed organ site-dependent benefit of ICB is recapitulated. Moreover, we provide empirical evidence for a critical role for B cells in the generation of site-dependent antitumor immunity following anti-CTLA-4 treatment. High levels of immunosuppressive cytokines in ascites may underlie the observed resistance of peritoneal metastases to ICB.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Peritoneais , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fator de Crescimento Transformador beta3 , Peritônio/metabolismo , Ascite , Neoplasias Peritoneais/tratamento farmacológico , Citocinas/metabolismo , Neoplasias Colorretais/tratamento farmacológico
5.
bioRxiv ; 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36263070

RESUMO

SARS-CoV-2 viruses engage ACE2 as a functional receptor with their spike protein. The S1 domain of the spike protein contains a C-terminal receptor-binding domain (RBD) and an N-terminal domain (NTD). The NTD of other coronaviruses includes a glycan-binding cleft. However, for the SARS-CoV-2 NTD protein-glycan binding was only observed weakly for sialic acids with highly sensitive methods. Amino acid changes in the NTD of Variants of Concern (VoC) shows antigenic pressure, which can be an indication of NTD-mediated receptor binding. Trimeric NTD proteins of SARS-CoV-2, Alpha, Beta, Delta, and Omicron did not reveal a receptor binding capability. Unexpectedly, the SARS-CoV-2 Beta subvariant strain (501Y.V2-1) NTD binding to Vero E6 cells was sensitive to sialidase pretreatment. Glycan microarray analyses identified a putative 9- O -acetylated sialic acid as a ligand, which was confirmed by catch-and-release ESI-MS, STD-NMR analyses, and a graphene-based electrochemical sensor. The Beta (501Y.V2-1) variant attained an enhanced glycan binding modality in the NTD with specificity towards 9- O -acetylated structures, suggesting a dual-receptor functionality of the SARS-CoV-2 S1 domain, which was quickly selected against. These results indicate that SARS-CoV-2 can probe additional evolutionary space, allowing binding to glycan receptors on the surface of target cells. Synopsis: Coronaviruses utilize their N-terminal domain (NTD) for initial reversible low-affinity interaction to (sialylated) glycans. This initial low-affinity/high-avidity engagement enables viral surfing on the target membrane, potentially followed by a stronger secondary receptor interaction. Several coronaviruses, such as HKU1 and OC43, possess a hemagglutinin-esterase for viral release after sialic acid interaction, thus allowing viral dissemination. Other coronaviruses, such as MERS-CoV, do not possess a hemagglutinin-esterase, but interact reversibly to sialic acids allowing for viral surfing and dissemination. The early 501Y.V2-1 subvariant of the Beta SARS-CoV-2 Variant of Concern has attained a receptor-binding functionality towards 9- O -acetylated sialic acid using its NTD. This binding functionality was selected against rapidly, most likely due to poor dissemination. Ablation of sialic acid binding in more recent SARS-CoV-2 Variants of Concern suggests a fine balance of sialic acid interaction of SARS-CoV-2 is required for infection and/or transmission.

6.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34424268

RESUMO

Stromal-derived follicular dendritic cells (FDCs) are essential for germinal centers (GCs), the site where B cells maturate their antibodies. FDCs present native antigen to B cells and maintain a CXCL13 gradient to form the B cell follicle. Yet despite their essential role, the transcriptome of human FDCs remains undefined. Using single-cell RNA sequencing and microarray, we provided the transcriptome of these enigmatic cells as a comprehensive resource. Key genes were validated by flow cytometry and microscopy. Surprisingly, marginal reticular cells (MRCs) rather than FDCs expressed B cell activating factor (BAFF). Furthermore, we found that human FDCs expressed TLR4 and can alter antigen availability in response to pathogen-associated molecular patterns (PAMPs). High expression of PD-L1 and PD-L2 on FDCs activated PD1 on T cells. In addition, we found expression of genes related to T cell regulation, such as HLA-DRA, CD40, and others. These data suggest intimate contact between human FDCs and T cells.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Células Dendríticas Foliculares/fisiologia , Imunidade Adaptativa , Células Apresentadoras de Antígenos/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Cadeias alfa de HLA-DR/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Jurkat , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
Immunity ; 54(2): 291-307.e7, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33450188

RESUMO

The role of innate immune cells in allergen immunotherapy that confers immune tolerance to the sensitizing allergen is unclear. Here, we report a role of interleukin-10-producing type 2 innate lymphoid cells (IL-10+ ILC2s) in modulating grass-pollen allergy. We demonstrate that KLRG1+ but not KLRG1- ILC2 produced IL-10 upon activation with IL-33 and retinoic acid. These cells attenuated Th responses and maintained epithelial cell integrity. IL-10+ KLRG1+ ILC2s were lower in patients with grass-pollen allergy when compared to healthy subjects. In a prospective, double-blind, placebo-controlled trial, we demonstrated that the competence of ILC2 to produce IL-10 was restored in patients who received grass-pollen sublingual immunotherapy. The underpinning mechanisms were associated with the modification of retinol metabolic pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathways in the ILCs. Altogether, our findings underscore the contribution of IL-10+ ILC2s in the disease-modifying effect by allergen immunotherapy.


Assuntos
Interleucina-10/metabolismo , Linfócitos/imunologia , Rinite Alérgica Sazonal/imunologia , Imunoterapia Sublingual/métodos , Adulto , Alérgenos/imunologia , Método Duplo-Cego , Feminino , Humanos , Tolerância Imunológica , Imunidade Inata , Janus Quinases/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Poaceae/imunologia , Pólen/imunologia , Receptores Imunológicos/metabolismo , Rinite Alérgica Sazonal/terapia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células Th2/imunologia , Resultado do Tratamento , Vitamina A/metabolismo , Adulto Jovem
8.
Sci Immunol ; 6(55)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514640

RESUMO

Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.


Assuntos
Asma/tratamento farmacológico , Glucocorticoides/farmacologia , Antígenos Comuns de Leucócito/metabolismo , Linfócitos/imunologia , Pólipos Nasais/tratamento farmacológico , Adolescente , Adulto , Idoso , Asma/diagnóstico , Asma/imunologia , Resistência a Medicamentos/imunologia , Feminino , Glucocorticoides/uso terapêutico , Humanos , Imunidade Inata , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Índice de Gravidade de Doença , Adulto Jovem
9.
Eur J Immunol ; 51(4): 811-823, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33300130

RESUMO

Human ILCs are classically categorized into five subsets; cytotoxic CD127- CD94+ NK cells and non-cytotoxic CD127+ CD94- , ILC1s, ILC2s, ILC3s, and LTi cells. Here, we identify a previously unrecognized subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs resemble conventional ILC3s in terms of phenotype, transcriptome, and cytokine production, but are highly cytotoxic. IL-15 was unable to induce differentiation of CD94+ ILCs toward mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R1 expression and produced IL-22 in response to IL-15. Culturing non-cytotoxic ILC3s with IL-12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL-15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.


Assuntos
Diferenciação Celular/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/imunologia , Interleucina-15/farmacologia , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Camundongos , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia
11.
Curr Biol ; 30(18): R1014-R1018, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32961149

RESUMO

Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health.


Assuntos
Experimentação Animal , Pesquisa Biomédica , Infecções por Coronavirus , Modelos Animais de Doenças , Pandemias , Pneumonia Viral , Animais , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2
13.
J Exp Med ; 216(8): 1762-1776, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31201208

RESUMO

Recently, human ILCs that express CD117 and CD127 but lack CRTH2 and NKp44 have been shown to contain precursors of ILC1, ILC2, and ILC3. However, these ILCs have not been extensively characterized. We performed an unbiased hierarchical stochastic neighbor embedding (HSNE) analysis of the phenotype of peripheral blood CD117+ ILCs, which revealed the presence of three major subsets: the first expressed NKp46, the second expressed both NKp46 and CD56, and the third expressed KLRG1, but not NKp46 or CD56. Analysis of their cytokine production profiles and transcriptome revealed that NKp46+ ILCs predominantly develop into ILC3s; some of them can differentiate into ILC1/NK-like cells, but they are unable to develop into ILC2s. In contrast, KLRG1+ ILCs predominantly differentiate into ILC2s. Single-cell cultures demonstrate that KLRG1+ ILCs can also differentiate into other ILC subsets depending on the signals they receive. Epigenetic profiling of KLRG1+ ILCs is consistent with the broad differentiation potential of these cells.


Assuntos
Diferenciação Celular/imunologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Doadores de Sangue , Linhagem Celular , Citocinas/metabolismo , Epigênese Genética , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Camundongos , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Tonsila Palatina/patologia , Fenótipo , Transcriptoma
14.
Nat Commun ; 10(1): 2162, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089134

RESUMO

Innate lymphoid cells (ILCs) are crucial for the immune surveillance at mucosal sites. ILCs coordinate early eradication of pathogens and contribute to tissue healing and remodeling, features that are dysfunctional in patients with cystic fibrosis (CF). The mechanisms by which ILCs contribute to CF-immunopathology are ill-defined. Here, we show that group 2 ILCs (ILC2s) transdifferentiated into IL-17-secreting cells in the presence of the epithelial-derived cytokines IL-1ß, IL-23 and TGF-ß. This conversion is abrogated by IL-4 or vitamin D3. IL-17 producing ILC2s induce IL-8 secretion by epithelial cells and their presence in nasal polyps of CF patients is associated with neutrophilia. Our data suggest that ILC2s undergo transdifferentiation in CF nasal polyps in response to local cytokines, which are induced by infectious agents.


Assuntos
Plasticidade Celular/imunologia , Fibrose Cística/imunologia , Inflamação/imunologia , Pólipos Nasais/imunologia , Células Th17/imunologia , Adulto , Animais , Linhagem Celular , Fibrose Cística/sangue , Fibrose Cística/patologia , Feminino , Humanos , Imunidade Inata , Inflamação/sangue , Inflamação/patologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-23/imunologia , Interleucina-23/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Pólipos Nasais/sangue , Pólipos Nasais/patologia , Neutrófilos/imunologia , Adulto Jovem
15.
Mol Med ; 25(1): 1, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616543

RESUMO

BACKGROUND: Both the parasympathetic and sympathetic nervous system exert control over innate immune responses. In inflammatory bowel disease, sympathetic innervation in intestinal mucosa is reduced. Our aim was to investigate the role of sympathetic innervation to the intestine on regulation of the innate immune responses. METHODS: In lipopolysaccharide (LPS)-stimulated macrophages, we evaluated the effect of adrenergic receptor activation on cytokine production and metabolic profile. In vivo, the effect of sympathetic denervation on mucosal innate immune responses using 6-hydroxydopamine (6-OHDA), or using surgical transection of the superior mesenteric nerve (sympathectomy) was tested in Rag1-/- mice that lack T- and B-lymphocytes. RESULTS: In murine macrophages, adrenergic ß2 receptor activation elicited a dose-dependent reduction of LPS-induced cytokines, reduced LPS-induced glycolysis and increased maximum respiration. Sympathectomy led to a significantly decreased norepinephrine concentration in intestinal tissue. Within 14 days after sympathectomy, mice developed clinical signs of colitis, colon oedema and excess colonic cytokine production. Both 6-OHDA and sympathectomy led to prominent goblet cell depletion and histological damage of colonic mucosa. CONCLUSIONS: We conclude that the sympathetic nervous system plays a regulatory role in constraining innate immune cell reactivity towards microbial challenges, likely via the adrenergic ß2 receptor.


Assuntos
Colite/imunologia , Imunidade Inata , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Sistema Nervoso Simpático/imunologia , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/farmacologia , Animais , Células Cultivadas , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidopamina/farmacologia
16.
Front Immunol ; 9: 2902, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692988

RESUMO

Expression of the Autoimmune regulator (AIRE) outside of the thymus has long been suggested in both humans and mice, but the cellular source in humans has remained undefined. Here we identify AIRE expression in human tonsils and extensively analyzed these "extra-thymic AIRE expressing cells" (eTACs) using combinations of flow cytometry, CyTOF and single cell RNA-sequencing. We identified AIRE+ cells as dendritic cells (DCs) with a mature and migratory phenotype including high levels of antigen presenting molecules and costimulatory molecules, and specific expression of CD127, CCR7, and PDL1. These cells also possessed the ability to stimulate and re-stimulate T cells and displayed reduced responses to toll-like receptor (TLR) agonists compared to conventional DCs. While expression of AIRE was enriched within CCR7+CD127+ DCs, single-cell RNA sequencing revealed expression of AIRE to be transient, rather than stable, and associated with the differentiation to a mature phenotype. The role of AIRE in central tolerance induction within the thymus is well-established, however our study shows that AIRE expression within the periphery is not associated with an enriched expression of tissue-restricted antigens (TRAs). This unexpected finding, suggestive of wider functions of AIRE, may provide an explanation for the non-autoimmune symptoms of APECED patients who lack functional AIRE.


Assuntos
Células Dendríticas/imunologia , Tonsila Palatina/citologia , Fatores de Transcrição/metabolismo , Antígeno B7-H1/metabolismo , Comunicação Celular/imunologia , Células Cultivadas , Pré-Escolar , Células Dendríticas/metabolismo , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Ativação Linfocitária , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Receptores CCR7/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Proteína AIRE
17.
Methods Mol Biol ; 1623: 105-112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28589351

RESUMO

Follicular dendritic cells (FDCs) are stromal cells that are centrally located within B cell follicles of lymph nodes and other lymphoid organs such as the spleen. Due to their relative low abundance and difficulty to isolate, FDCs are still largely an enigma. Here we describe how to isolate FDCs for ex vivo cell culture, sorting by flow cytometry and how to load them in vivo or in vitro with immune complexes.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Animais , Biomarcadores , Citometria de Fluxo , Imunofluorescência , Imunofenotipagem , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Baço/citologia , Baço/imunologia , Baço/metabolismo
18.
Immunity ; 46(1): 106-119, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099860

RESUMO

A hallmark of autoimmunity in murine models of lupus is the formation of germinal centers (GCs) in lymphoid tissues where self-reactive B cells expand and differentiate. In the host response to foreign antigens, follicular dendritic cells (FDCs) maintain GCs through the uptake and cycling of complement-opsonized immune complexes. Here, we examined whether FDCs retain self-antigens and the impact of this process in autoantibody secretion in lupus. We found that FDCs took up and retained self-immune complexes composed of ribonucleotide proteins, autoantibody, and complement. This uptake, mediated through CD21, triggered endosomal TLR7 and led to the secretion of interferon (IFN) α via an IRF5-dependent pathway. Blocking of FDC secretion of IFN-α restored B cell tolerance and reduced the amount of GCs and pathogenic autoantibody. Thus, FDCs are a critical source of the IFN-α driving autoimmunity in this lupus model. This pathway is conserved in humans, suggesting that it may be a viable therapeutic target in systemic lupus erythematosus.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoantígenos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Reação em Cadeia da Polimerase , Receptor 7 Toll-Like/imunologia , Transcriptoma
19.
Trends Immunol ; 37(12): 844-854, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793570

RESUMO

Unlike T cells that recognize digested peptides, B cells recognize their cognate antigen in its native form. The B cell receptor used in recognition can also be secreted to bind to antigens and initiate multiple effector functions such as phagocytosis, complement activation, or neutralization of receptors. While B cells can interact with soluble antigens, it is now clear that the presentation of membrane-bound antigen plays a crucial role in B cell activation, and in particular during affinity-maturation, the process during which high-affinity B cells are selected. In this review we discuss how native antigen is presented to B cells and its impact at several stages of B cell responses.


Assuntos
Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Afinidade de Anticorpos , Antígenos/imunologia , Seleção Clonal Mediada por Antígeno , Ativação do Complemento , Humanos , Fagocitose
20.
Cell Rep ; 16(12): 3130-3137, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653679

RESUMO

Affinity-mature B cells require cognate antigen, retained by follicular dendritic cells (FDCs), for clonal selection within germinal centers. Studies on how FDCs in lymphoid tissues acquire antigen have relied primarily on model protein antigens. To examine delivery of intact bacteria to FDCs, we used inactivated Streptococcus pneumonia (SP). We found that both medullary macrophages and a subset of SIGN-R1-positive dendritic cells (DCs) in the lymph node capture SP from the draining afferent lymphatics. The presence of DCs is required for initial complement activation, opsonization of the bacteria, and efficient transport of SP to FDCs. Moreover, we observed a major role for transport of bacteria to FDCs by naive B cells via a CD21-dependent pathway. We propose a mechanism by which efficient transport of SP to FDCs is dependent on DCs for initial binding and activation of complement and either direct transport to FDCs or transfer to naive B cells.


Assuntos
Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Células Dendríticas/imunologia , Streptococcus pneumoniae/patogenicidade , Animais , Moléculas de Adesão Celular/imunologia , Centro Germinativo/imunologia , Lectinas Tipo C/imunologia , Linfonodos/imunologia , Linfonodos/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Receptores de Superfície Celular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA