Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327184

RESUMO

Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.


Assuntos
Resiliência Psicológica , Solo , Metano , Microbiologia do Solo , Agricultura , Oxirredução
2.
ISME Commun ; 3(1): 62, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355679

RESUMO

Porcellio scaber (woodlice) are (sub-)surface-dwelling isopods, widely recognized as "soil bioengineers", modifying the edaphic properties of their habitat, and affecting carbon and nitrogen mineralization that leads to greenhouse gas emissions. Yet, the impact of soil isopods on methane-cycling processes remains unknown. Using P. scaber as a model macroinvertebrate in a microcosm study, we determined how the isopod influences methane uptake and the associated interaction network in an agricultural soil. Stable isotope probing (SIP) with 13C-methane was combined to a co-occurrence network analysis to directly link activity to the methane-oxidizing community (bacteria and fungus) involved in the trophic interaction. Compared to microcosms without the isopod, P. scaber significantly induced methane uptake, associated to a more complex bacteria-bacteria and bacteria-fungi interaction, and modified the soil nutritional status. Interestingly, 13C was transferred via the methanotrophs into the fungi, concomitant to significantly higher fungal abundance in the P. scaber-impacted soil, indicating that the fungal community utilized methane-derived substrates in the food web along with bacteria. Taken together, results showed the relevance of P. scaber in modulating methanotrophic activity with implications for bacteria-fungus interaction.

3.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37156510

RESUMO

A viral shunt can occur when phages going through a lytic cycle, including lysogenic phages triggered by inducing agents (e.g. mitomycin C), results in host lysis and the release of cell constituents and virions. The impact of a viral shunt on the carbon, including methane cycle in soil systems is poorly understood. Here, we determined the effects of mitomycin C on the aerobic methanotrophs in a landfill cover soil. To an extent, our results support a mitomycin C-induced viral shunt, as indicated by the significantly higher viral-like particle (VLP) counts relative to bacteria, elevated nutrient concentrations (ammonium, succinate), and initially impaired microbial activities (methane uptake and microbial respiration) after mitomycin C addition. The trend in microbial activities at <2 days largely corresponded to the expression of the pmoA and 16S rRNA genes. Thereafter (>11 days), the active bacterial community composition significantly diverged in the mitomycin C-supplemented incubations, suggesting the differential impact of mitomycin C on the bacterial community. Collectively, we provide insight on the effects of mitomycin C, and potentially a viral shunt, on the bacteria in the soil environment.


Assuntos
Mitomicina , Solo , Oxirredução , Mitomicina/farmacologia , Mitomicina/metabolismo , RNA Ribossômico 16S/genética , Bactérias , Instalações de Eliminação de Resíduos , Metano/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA