Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Chem Theory Comput ; 19(18): 6342-6352, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37616238

RESUMO

Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Simulação de Dinâmica Molecular , Colesterol/química
2.
Sensors (Basel) ; 21(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374853

RESUMO

This contribution investigates fatigue crack detection, localization and quantification in idealized necked double shear lugs using piezoelectric transducers attached to the lug shaft and analyzed by the electro-mechanical impedance (EMI) method. The considered idealized necked lug sample has a simplified geometry and does not includes the typical bearing. Numerical simulations with coupled-field finite element (FE) models are used to study the frequency response behavior of necked lugs. These numerical analyses include both pristine and cracked lug models. Through-cracks are located at 90∘ and 145∘ to the lug axis, which are critical spots for damage initiation. The results of FE simulations with a crack location at 90∘ are validated with experiments using an impedance analyzer and a scanning laser Doppler vibrometer. For both experiments, the lug specimen is excited and measured using a piezoelectric active wafer sensor in a frequency range of 1kHz-100kHz. The dynamic response of both numerical calculations and experimental measurements show good agreement. To identify (i.e., detect, locate, and quantify) cracks in necked lugs a two-step analysis is performed. In the first step, a crack is detected data-based by calculating damage metrics between pristine and damaged state frequency spectra and comparing the resulting values to a pre-defined threshold. In the second step the location and size of the detected crack is identified by evaluation of specific resonance frequency shifts of the necked lug. Both the search for frequencies sensitive to through-cracks that allow a distinction between the two critical locations and the evaluation of the crack size are model-based. This two-step analysis based on the EMI method is demonstrated experimentally at the considered idealized necked lug, and thus, represents a promising way to reliably detect, locate and quantify fatigue cracks at critical locations of real necked double shear lugs.

3.
Langmuir ; 32(20): 5195-200, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27128636

RESUMO

Cell membranes possess a complex three-dimensional architecture, including nonrandom lipid lateral organization within the plane of a bilayer leaflet, and compositional asymmetry between the two leaflets. As a result, delineating the membrane structure-function relationship has been a highly challenging task. Even in simplified model systems, the interactions between bilayer leaflets are poorly understood, due in part to the difficulty of preparing asymmetric model membranes that are free from the effects of residual organic solvent or osmotic stress. To address these problems, we have modified a technique for preparing asymmetric large unilamellar vesicles (aLUVs) via cyclodextrin-mediated lipid exchange in order to produce tensionless, solvent-free aLUVs suitable for a range of biophysical studies. Leaflet composition and structure were characterized using isotopic labeling strategies, which allowed us to avoid the use of bulky labels. NMR and gas chromatography provided precise quantification of the extent of lipid exchange and bilayer asymmetry, while small-angle neutron scattering (SANS) was used to resolve bilayer structural features with subnanometer resolution. Isotopically asymmetric POPC vesicles were found to have the same bilayer thickness and area per lipid as symmetric POPC vesicles, demonstrating that the modified exchange protocol preserves native bilayer structure. Partial exchange of DPPC into the outer leaflet of POPC vesicles produced chemically asymmetric vesicles with a gel/fluid phase-separated outer leaflet and a uniform, POPC-rich inner leaflet. SANS was able to separately resolve the thicknesses and areas per lipid of coexisting domains, revealing reduced lipid packing density of the outer leaflet DPPC-rich phase compared to typical gel phases. Our finding that a disordered inner leaflet can partially fluidize ordered outer leaflet domains indicates some degree of interleaflet coupling, and invites speculation on a role for bilayer asymmetry in modulating membrane lateral organization.


Assuntos
Lipossomas Unilamelares/química , 1,2-Dipalmitoilfosfatidilcolina/química , Fosfatidilcolinas/química
4.
Soft Matter ; 12(13): 3189-95, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27003910

RESUMO

We have studied the contributions of stored elastic energies in liquid-ordered (Lo) and liquid-disordered (Ld) domains to transmembrane proteins using the lateral pressure concept. In particular we applied previously reported experimental data for the membrane thickness, intrinsic curvature and bending elasticities of coexisting Lo/Ld domains to calculate whether proteins of simple geometric shapes would preferentially diffuse into Lo or Ld domains and form oligomers of a certain size. For the studied lipid mixture we generally found that proteins with convex shapes prefer sorting to Ld phases and the formation of large clusters. Lo domains in turn would be enriched in monomers of concave shaped proteins. We further observed that proteins which are symmetric with respect to the bilayer center prefer symmetric Lo or Ld domains, while asymmetric proteins favor a location in domains with Lo/Ld asymmetry. In the latter case we additionally retrieved a strong dependence on protein directionality, thus providing a mechanism for transmembrane protein orientation.


Assuntos
Proteínas de Membrana/química , Colesterol/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Multimerização Proteica , Difração de Raios X
5.
Biophys J ; 108(12): 2833-42, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26083923

RESUMO

To precisely quantify the fundamental interactions between heterogeneous lipid membranes with coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed detailed osmotic stress small-angle x-ray scattering experiments by exploiting the domain alignment in raft-mimicking lipid multibilayers. Performing a Monte Carlo-based analysis allowed us to determine with high reliability the magnitude and functional dependence of interdomain forces concurrently with the bending elasticity moduli. In contrast to previous methodologies, this approach enabled us to consider the entropic undulation repulsions on a fundamental level, without having to take recourse to crudely justified mean-field-like additivity assumptions. Our detailed Hamaker-coefficient calculations indicated only small differences in the van der Waals attractions of coexisting Lo and Ld phases. In contrast, the repulsive hydration and undulation interactions differed significantly, with the latter dominating the overall repulsions in the Ld phase. Thus, alignment of like domains in multibilayers appears to originate from both, hydration and undulation repulsions.


Assuntos
Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Fenômenos Biomecânicos , Entropia , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Biophys J ; 108(4): 854-862, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692590

RESUMO

Biophysical understanding of membrane domains requires accurate knowledge of their structural details and elasticity. We report on a global small angle x-ray scattering data analysis technique for coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains in fully hydrated multilamellar vesicles. This enabled their detailed analysis for differences in membrane thickness, area per lipid, hydrocarbon chain length, and bending fluctuation as demonstrated for two ternary mixtures (DOPC/DSPC/CHOL and DOPC/DPPC/CHOL) at different cholesterol concentrations. Lo domains were found to be ~10 Å thicker, and laterally up to 20 Å(2)/lipid more condensed than Ld domains. Their bending fluctuations were also reduced by ~65%. Increase of cholesterol concentration caused significant changes in structural properties of Ld, while its influence on Lo properties was marginal. We further observed that temperature-induced melting of Lo domains is associated with a diffusion of cholesterol to Ld domains and controlled by Lo/Ld thickness differences.


Assuntos
Fluidez de Membrana , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Simulação de Dinâmica Molecular
7.
J Appl Crystallogr ; 47(Pt 1): 173-180, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24587787

RESUMO

The highly successful scattering density profile (SDP) model, used to jointly analyze small-angle X-ray and neutron scattering data from unilamellar vesicles, has been adapted for use with data from fully hydrated, liquid crystalline multilamellar vesicles (MLVs). Using a genetic algorithm, this new method is capable of providing high-resolution structural information, as well as determining bilayer elastic bending fluctuations from standalone X-ray data. Structural parameters such as bilayer thickness and area per lipid were determined for a series of saturated and unsaturated lipids, as well as binary mixtures with cholesterol. The results are in good agreement with previously reported SDP data, which used both neutron and X-ray data. The inclusion of deuterated and non-deuterated MLV neutron data in the analysis improved the lipid backbone information but did not improve, within experimental error, the structural data regarding bilayer thickness and area per lipid.

8.
J Chem Theory Comput ; 9(9): 3866-3871, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24039553

RESUMO

We establish a computational approach to extract the bending modulus, KC , for lipid membranes from relatively small-scale molecular simulations. Fluctuations in the splay of individual pairs of lipids faithfully inform on KC in multicomponent membranes over a large range of rigidities in different thermodynamic phases. Predictions are validated by experiments even where the standard spectral analysis-based methods fail. The local nature of this method potentially allows its extension to calculations of KC in protein-laden membranes.

9.
Cell Calcium ; 53(2): 139-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23218667

RESUMO

As the molecular composition of calcium-release activated calcium (CRAC) channels has been unknown for two decades, elucidation of selective inhibitors has been considerably hampered. By the identification of the two key components of CRAC channels, STIM1 and Orai1 have emerged as promising targets for CRAC blockers. The aim of this study was to thoroughly characterize the effects of two selective CRAC channel blockers on currents derived from STIM1/Orai heterologoulsy expressed in HEK293 cells. The novel compounds GSK-7975A and GSK-5503A were tested for effects on STIM1 mediated Orai1 or Orai3 currents by whole-cell patch-clamp recordings and for the effects on STIM1 oligomerisation or STIM1/Orai coupling by FRET microscopy. To investigate their site of action, inhibitory effects of these molecules were explored using Orai pore mutants. The GSK blockers inhibited Orai1 and Orai3 currents with an IC(50) of approximately 4µM and exhibited a substantially slower rate of onset than the typical pore blocker La(3+), together with almost no current recovery upon wash-out over 4min. For the less Ca(2+)-selective Orai1 E106D pore mutant, I(CRAC) inhibition was significantly reduced. FRET experiments indicated that neither STIM1-STIM1 oligomerization nor STIM1-Orai1 coupling was affected by these compounds. These CRAC channel blockers are acting downstream of STIM1 oligomerization and STIM1/Orai1 interaction, potentially via an allosteric effect on the selectivity filter of Orai. The elucidation of these CRAC current blockers represents a significant step toward the identification of CRAC channel-selective drug compounds.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Regulação Alostérica , Canais de Cálcio/genética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mutação , Proteínas de Neoplasias/genética , Proteína ORAI1 , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Molécula 1 de Interação Estromal , Transfecção
10.
Soft Matter ; 9(45): 10877-10884, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24672578

RESUMO

Monolayer spontaneous curvatures for cholesterol, DOPE, POPE, DOPC, DPPC, DSPC, POPC, SOPC, and egg sphingomyelin were obtained using small-angle X-ray scattering (SAXS) on inverted hexagonal phases (HII). Spontaneous curvatures of bilayer forming lipids were estimated by adding controlled amounts to a HII forming template following previously established protocols. Spontaneous curvatures of both phosphatidylethanolamines and cholesterol were found to be at least a factor of two more negative than those of phosphatidylcholines, whose J0 values are closer to zero. Interestingly, a significant positive J0 value was retrieved for DPPC. We further determined the temperature dependence of the spontaneous curvatures J0(T) in the range from 15 to 55 °C, resulting in a quite narrow distribution of -1 to -3 × 10-3 (nm °C)-1 for most investigated lipids. The data allowed us to estimate the monolayer spontaneous curvatures of ternary lipid mixtures showing liquid ordered/liquid disordered phase coexistence. We report spontaneous curvature phase diagrams for DSPC/DOPC/Chol, DPPC/DOPC/Chol and SM/POPC/Chol and discuss effects on protein insertion and line tension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA