Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Chem Sci ; 12(21): 7324-7333, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163822

RESUMO

The allure of metal-organic frameworks (MOFs) in heterogeneous electrocatalysis is that catalytically active sites may be designed a priori with an unparalleled degree of control. An emerging strategy to generate coordinatively-unsaturated active sites is through the use of organic linkers that lack a functional group that would usually bind with the metal nodes. To execute this strategy, we synthesize a model MOF, Ni-MOF-74 and incorporate a fraction of 2-hydroxyterephthalic acid in place of 2,5-dihydroxyterephthalic acid. The defective MOF, Ni-MOF-74D, is evaluated vs. the nominally defect-free Ni-MOF-74 with a host of ex situ and in situ spectroscopic and electroanalytical techniques, using the oxidation of hydroxymethylfurtural (HMF) as a model reaction. The data indicates that Ni-MOF-74D features a set of 4-coordinate Ni-O4 sites that exhibit unique vibrational signatures, redox potentials, binding motifs to HMF, and consequently superior electrocatalytic activity relative to the original Ni-MOF-74 MOF, being able to convert HMF to the desired 2,5-furandicarboxylic acid at 95% yield and 80% faradaic efficiency. Furthermore, having such rationally well-defined catalytic sites coupled with in situ Raman and infrared spectroelectrochemical measurements enabled the deduction of the reaction mechanism in which co-adsorbed *OH functions as a proton acceptor in the alcohol oxidation step and carries implications for catalyst design for heterogeneous electrosynthetic reactions en route to the electrification of the chemical industry.

2.
Chem Commun (Camb) ; 56(65): 9276-9279, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32691796

RESUMO

The utilisation of inductive effects is emerging as a powerful tool to enhance material properties. Within the context of electrocatalysis, such effects may alter an active site's electronic structure and consequently, its catalytic activity. To this end, we introduce catalytically active cobalt species within an electron-withdrawing copper fluorophosphate host via a mechanochemical synthetic method. The resulting mixed-metal material features exceptional performance towards electrochemical water oxidation (η of ∼300 mV for 100 mA cm-2) and biomass valorisation (95% selectivity for 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid conversion), thus opening avenues for the rational design of heterogeneous catalysts.

3.
J Am Chem Soc ; 142(28): 12382-12393, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32508090

RESUMO

A wide array of systems, ranging from enzymes to synthetic catalysts, exert adaptive motifs to maximize their functionality. In a related manner, select metal-organic frameworks (MOFs) and similar systems exhibit structural modulations under stimuli such as the infiltration of guest species. Probing their responsive behavior in situ is a challenging but important step toward understanding their function and subsequently building functional systems. In this report, we investigate the dynamic behavior of an electrocatalytic Mn-porphyrin-containing MOF system (Mn-MOF). We discover, using a combination of electrochemistry and in situ probes of UV-vis absorption, resonance Raman, and infrared spectroscopy, a restructuration of this system via a reversible cleavage of the porphyrin carboxylate ligands under an applied voltage. We further show, by combining experimental data and DFT calculations, as a proof of concept, the capacity to utilize the Mn-MOF for electrochemical CO2 fixation and to spectroscopically capture the reaction intermediates in its catalytic cycle. The findings of this work and the methodology developed open opportunities in the application of MOFs as dynamic, enzyme-inspired electrocatalytic systems.

4.
Chem Commun (Camb) ; 56(62): 8726-8734, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32432252

RESUMO

Electrocatalysis is a promising route to generate fuels and value-added chemicals from abundant feedstocks powered by renewable electricity. The field of electrocatalysis research has made great progress in supplementing electrocatalyst development with operando vibrational spectroscopic techniques, those carried out simultaneously as the reaction is occurring. Such experiments unveil reaction mechanisms, structure-activity relationships and consequently, accelerate the development of next generation electrocatalytic systems. While operando techniques have now been extensively applied to water electrolysis and CO2 reduction, their application to the emerging area of biomass valorization is rather nascent. The electrocatalytic conversion of biomass can provide an alternate, environmentally friendly route to the chemicals which power our society, but this field still requires much growth before the envisioned technologies are economically competetive with thermochemical routes. Within this context, a growing body of work has begun to translate the methodology and concepts from water/CO2 electrolysis to biomass valorization to elucidate links between catalyst structure, adsorbed surface intermediates, and the resultant catalytic performance. The reactions of interest here include the upgrading of biomass platforms such a 5-hydroxymethylfurfural or glycerol to value-added chemicals. In this feature article we highlight these efforts and provide a critical view on the steps necessary to take to further progress the field. We further show how the knowledge derived from these studies can be translated to a plethora of other organic transformations to forge new avenues in renewable energy electrocatalysis.

5.
Chem Sci ; 11(7): 1798-1806, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32180924

RESUMO

The electrochemical oxidation of biomass platforms such as 5-hydroxymethylfurfural (HMF) to value-added chemicals is an emerging clean energy technology. However, mechanistic knowledge of this reaction in an electrochemical context is still lacking and operando studies are even more rare. In this work, we utilize core-shell gold-metal oxide nanostructures which enable operando surface-enhanced Raman spectroelectrochemical studies to simultaneously visualize catalyst material transformation and surface reaction intermediates under an applied voltage. As a case study, we show how the transformation of NiOOH from ∼1-2 nm amorphous Ni layers facilitates the onset of HMF oxidation to 2,5-furandicarboxylic acid (FDCA), which is attained with 99% faradaic efficiency in 1 M KOH. In contrast to the case in 1 M KOH, NiOOH formation is suppressed, and consequently HMF oxidation is sluggish in 10 mM KOH, even at highly oxidizing potentials. Operando Raman experiments elucidate how surface adsorption and interaction dictates product selectivity and how the surface intermediates evolve with applied potential. We further extend our methodology to investigate NiFe, Co, Fe, and CoFe catalysts and demonstrate that high water oxidation activity is not necessarily correlated with excellent HMF oxidation performance and highlight catalytic factors important for this reaction such as reactant-surface interactions and the catalysts' physical and electronic structure. The insights extracted are expected to pave the way for a deepened understanding of a wide array of electrochemical systems such as for organic transformations and CO2 fixation.

6.
J Am Chem Soc ; 142(11): 5194-5203, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32066233

RESUMO

Extracellular electron transfer (EET) in microorganisms is prevalent in nature and has been utilized in functional bioelectrochemical systems. EET of Geobacter sulfurreducens has been extensively studied and has been revealed to be facilitated through c-type cytochromes, which mediate charge between the electrode and G. sulfurreducens in anodic mode. However, the EET pathway of cathodic conversion of fumarate to succinate is still under debate. Here, we apply a variety of analytical methods, including electrochemistry, UV-vis absorption and resonance Raman spectroscopy, quartz crystal microbalance with dissipation, and electron microscopy, to understand the involvement of cytochromes and other possible electron-mediating species in the switching between anodic and cathodic reaction modes. By switching the applied bias for a G. sulfurreducens biofilm coupled to investigating the quantity and function of cytochromes, as well as the emergence of Fe-containing particles on the cell membrane, we provide evidence of a diminished role of cytochromes in cathodic EET. This work sheds light on the mechanisms of G. sulfurreducens biofilm growth and suggests the possible existence of a nonheme, iron-involving EET process in cathodic mode.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Grupo dos Citocromos c/metabolismo , Elétrons , Geobacter/fisiologia , Acetatos/metabolismo , Técnicas Eletroquímicas , Eletrodos , Ferro/metabolismo , Oxirredução , Ácido Succínico/metabolismo
7.
ACS Catal ; 10(1): 751-761, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31929948

RESUMO

The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic-inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry.

8.
Chem Commun (Camb) ; 55(80): 11996-11999, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31531432

RESUMO

Electrocatalytic conversion of biomass-derived intermediates is a green route to value-added chemicals. However, this technology is just emerging and the mechanisms of this process are not fully resolved. Here, we present the first operando Raman spectroscopic investigation of 5-hydroxymethylfurfural oxidation on gold nanoparticle surfaces, opening up avenues for understanding such reactivity and for rational systems design.

9.
Nano Lett ; 19(8): 4817-4826, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31260630

RESUMO

With the rising emphasis on renewable energy research, the field of electrocatalytic CO2 conversion to fuels has grown tremendously in recent years. Advances in nanomaterial synthesis and characterization have enabled researchers to screen effects of elemental composition, size, and surface chemistry on catalyst performance. However, direct links from structure and active state to catalytic function are difficult to establish. To this end, operando spectroscopic techniques, those conducted simultaneously as catalysts operate, can provide key complementary information by investigating electrocatalysis under turnover conditions. In particular, Raman and infrared spectroscopy have the potential to reveal the identity of surface-bound intermediates, catalyst active state, and possible reaction sites to supplement the insights extracted from conventional electrochemistry. Such research aims to work in tandem synthetic and catalytic efforts to guide the development of next-generation CO2 electrocatalytic systems through rational design. In this Mini Review, we examine the latest developments in the operando probing of electrochemical CO2 reduction on nanostructured electrocatalysts and detail how this research accelerates the advancement of this field.

10.
Acc Chem Res ; 52(5): 1439-1448, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31042353

RESUMO

Enzymes are the essential catalytic components of biology and adsorbing redox-active enzymes on electrode surfaces enables the direct probing of their function. Through standard electrochemical measurements, catalytic activity, reversibility and stability, potentials of redox-active cofactors, and interfacial electron transfer rates can be readily measured. Mechanistic investigations on the high electrocatalytic rates and selectivity of enzymes may yield inspiration for the design of synthetic molecular and heterogeneous electrocatalysts. Electrochemical investigations of enzymes also aid in our understanding of their activity within their biological environment and why they evolved in their present structure and function. However, the conventional array of electrochemical techniques (e.g., voltammetry and chronoamperometry) alone offers a limited picture of the enzyme-electrode interface. How many enzymes are loaded onto an electrode? In which orientation(s) are they bound? What fraction is active, and are single or multilayers formed? Does this static picture change over time, applied voltage, or chemical environment? How does charge transfer through various intraprotein cofactors contribute to the overall performance and catalytic bias? What is the distribution of individual enzyme activities within an ensemble of active protein films? These are central questions for the understanding of the enzyme-electrode interface, and a multidisciplinary approach is required to deliver insightful answers. Complementing standard electrochemical experiments with an orthogonal set of techniques has recently allowed to provide a more complete picture of enzyme-electrode systems. Within this framework, we first discuss a brief history of achievements and challenges in enzyme electrochemistry. We subsequently describe how the aforementioned challenges can be overcome by applying advanced electrochemical techniques, quartz-crystal microbalance measurements, and spectroscopic, namely, resonance Raman and infrared, analysis. For example, rotating ring disk electrochemistry permits the simultaneous determination of reaction kinetics and quantification of generated products. In addition, recording changes in frequency and dissipation in a quartz crystal microbalance allows to shed light into enzyme loading, relative orientation, clustering, and denaturation at the electrode surface. Resonance Raman spectroscopy yields information on ligation and redox state of enzyme cofactors, whereas infrared spectroscopy provides insights into active site states and the protein secondary and tertiary structure. The development of these emerging methods for the analysis of the enzyme-electrode interface is the primary focus of this Account. We also take a critical look at the remaining gaps in our understanding and challenges lying ahead toward attaining a complete mechanistic picture of the enzyme-electrode interface.


Assuntos
Técnicas Eletroquímicas/métodos , Enzimas Imobilizadas/análise , Adsorção , Domínio Catalítico , Coenzimas/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Enzimas Imobilizadas/química , Oxirredução , Análise Espectral
11.
Angew Chem Int Ed Engl ; 58(14): 4601-4605, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30724432

RESUMO

The integration of enzymes with synthetic materials allows efficient electrocatalysis and production of solar fuels. Here, we couple formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough (DvH) to metal oxides for catalytic CO2 reduction and report an in-depth study of the resulting enzyme-material interface. Protein film voltammetry (PFV) demonstrates the stable binding of FDH on metal-oxide electrodes and reveals the reversible and selective reduction of CO2 to formate. Quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR-IR) spectroscopy confirm a high binding affinity for FDH to the TiO2 surface. Adsorption of FDH on dye-sensitized TiO2 allows for visible-light-driven CO2 reduction to formate in the absence of a soluble redox mediator with a turnover frequency (TOF) of 11±1 s-1 . The strong coupling of the enzyme to the semiconductor gives rise to a new benchmark in the selective photoreduction of aqueous CO2 to formate.


Assuntos
Dióxido de Carbono/química , Formiato Desidrogenases/química , Titânio/química , Dióxido de Carbono/metabolismo , Catálise , Eletrodos , Formiato Desidrogenases/metabolismo , Formiatos/química , Formiatos/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Técnicas de Microbalança de Cristal de Quartzo , Semicondutores , Espectrofotometria Infravermelho , Titânio/metabolismo
12.
Physiol Plant ; 166(1): 460-471, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706497

RESUMO

Mimicking photosynthesis in generating chemical fuels from sunlight is a promising strategy to alleviate society's demand for fossil fuels. However, this approach involves a number of challenges that must be overcome before this concept can emerge as a viable solution to society's energy demand. Particularly in artificial photosynthesis, the catalytic chemistry that converts energy in the form of electricity into carbon-based fuels and chemicals has yet to be developed. Here, we describe the foundational work and future prospects of an emerging and promising class of materials: metal- and covalent-organic frameworks (MOFs and COFs). Within this context, these porous and tuneable framework materials have achieved initial success in converting abundant feedstocks (H2 O and CO2 ) into chemicals and fuels. In this review, we first highlight key achievements in this direction. We then follow with a perspective on precisely how MOFs and COFs can perform in ways not possible with conventional molecular or heterogeneous catalysts. We conclude with a view on how spectroscopically probing MOF and COF catalysis can be used to elucidate reaction mechanisms and material dynamics throughout the course of reaction.


Assuntos
Metais/química , Fotossíntese/fisiologia , Dióxido de Carbono/química , Catálise , Estruturas Metalorgânicas/metabolismo , Água/química
13.
Nano Lett ; 19(3): 1844-1850, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30689393

RESUMO

Semiartificial photosynthesis integrates photosynthetic enzymes with artificial electronics, which is an emerging approach to reroute the natural photoelectrogenetic pathways for sustainable fuel and chemical synthesis. However, the reduced catalytic activity of enzymes in bioelectrodes limits the overall performance and further applications in fuel production. Here, we show new insights into factors that affect the photoelectrogenesis in a model system consisting of photosystem II and three-dimensional indium tin oxide and graphene electrodes. Confocal fluorescence microscopy and in situ surface-sensitive infrared spectroscopy are employed to probe the enzyme distribution and penetration within electrode scaffolds of different structures, which is further correlated with protein film-photoelectrochemistry to establish relationships between the electrode architecture and enzyme activity. We find that the hierarchical structure of electrodes mainly influences the protein loading but not the enzyme activity. Photoactivity is more limited by light intensity and electronic communication at the biointerface. This study provides guidelines for maximizing the performance of semiartificial photosynthesis and also presents a set of methodologies to probe the photoactive biofilms in three-dimensional electrodes.


Assuntos
Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Relação Estrutura-Atividade , Catálise , Eletrodos , Grafite/química , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Compostos de Estanho/química , Água/química
14.
Chem Sci ; 10(40): 9209-9218, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32055307

RESUMO

The development of electrocatalysts for the oxygen evolution reaction (OER) is one of the principal challenges in the area of renewable energy research. Within this context, mixed-metal oxides have recently emerged as the highest performing OER catalysts. Their structural and compositional modification to further boost their activity is crucial to the wide-spread use of electrolysis technologies. In this work, we investigated a series of mixed-metal F-containing materials as OER catalysts to probe possible benefits of the high electronegativity of fluoride ions. We found that crystalline hydrated fluorides, CoFe2F8(H2O)2 and NiFe2F8(H2O)2, and amorphous oxyfluorides, NiFe2F4.4O1.8 and CoFe2F6.6O0.7, feature excellent activity (overpotential for 10 mA cm-2 as low as 270 mV) and stability (extended performance for >250 hours with ∼40 mV activity loss) for the OER in alkaline electrolyte. Subsequent electroanalytical and spectroscopic characterization hinted that the electronic structure modulation conferred by the fluoride ions aided their reactivity. Finally, the best catalyst of the set, NiFe2F4.4O1.8, was applied as anode in an electrolyzer comprised solely of earth-abundant materials, which carried out overall water splitting at 1.65 V at 10 mA cm-2.

15.
Chem Sci ; 9(24): 5322-5333, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30009004

RESUMO

A critical challenge in energy research is the development of earth abundant and cost-effective materials that catalyze the electrochemical splitting of water into hydrogen and oxygen at high rates and low overpotentials. Key to addressing this issue lies not only in the synthesis of new materials, but also in the elucidation of their active sites, their structure under operating conditions and ultimately, extraction of the structure-function relationships used to spearhead the next generation of catalyst development. In this work, we present a complete cycle of synthesis, operando characterization, and redesign of an amorphous cobalt phosphide (CoP x ) bifunctional catalyst. The research was driven by integrated electrochemical analysis, Raman spectroscopy and gravimetric measurements utilizing a novel quartz crystal microbalance spectroelectrochemical cell to uncover the catalytically active species of amorphous CoP x and subsequently modify the material to enhance the activity of the elucidated catalytic phases. Illustrating the power of our approach, the second generation cobalt-iron phosphide (CoFePx) catalyst, developed through an iteration of the operando measurement directed optimization cycle, is superior in both hydrogen and oxygen evolution reactivity over the previous material and is capable of overall water electrolysis at a current density of 10 mA cm-2 with 1.5 V applied bias in 1 M KOH electrolyte solution.

16.
ACS Appl Mater Interfaces ; 10(27): 23380-23391, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943966

RESUMO

Surface-enhanced infrared absorption spectroscopy is used in situ to determine the electrochemical stability of organic interfaces deposited onto the surface of nanostructured, thin-film gold electrodes via the electrochemical reduction of diazonium salts. These interfaces are shown to exhibit a wide electrochemical stability window in both acetonitrile and phosphate buffer, far surpassing the stability window of thiol-derived self-assembled monolayers. Using the same in situ technique, the application of radical scavengers during the electrochemical reduction of diazonium salts is shown to moderate interface formation. Consequently, the heterogeneous charge-transfer resistance can be reduced sufficiently to enhance the direct electron transfer between an immobilized redox-active enzyme and the electrode. This was demonstrated for the oxygen-tolerant [NiFe] hydrogenase from the "Knallgas" bacterium Ralstonia eutropha by relating its electrochemical activity for hydrogen oxidation to the interface properties.


Assuntos
Técnicas Eletroquímicas/métodos , Enzimas Imobilizadas/química , Ouro/química , Hidrogenase/química , Análise Espectral/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cupriavidus necator/enzimologia , Compostos de Diazônio/química , Eletrodos , Enzimas Imobilizadas/metabolismo , Hidrogenase/metabolismo , Propriedades de Superfície
17.
Angew Chem Int Ed Engl ; 57(33): 10595-10599, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29888857

RESUMO

Hydrogenases (H2 ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2 ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si|IO-TiO2 |H2 ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si|IO-TiO2 |H2 ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO-TiO2 |H2 ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.


Assuntos
Hidrogenase/metabolismo , Energia Solar , Água/metabolismo , Bismuto/química , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/metabolismo , Luz , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Silício/química , Titânio/química , Vanadatos/química , Água/química
18.
PLoS One ; 10(11): e0143101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580976

RESUMO

Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H2 conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme.


Assuntos
Biocatálise , Eletroquímica/métodos , Hidrogenase/metabolismo , Oxigênio/farmacologia , Adsorção , Biocatálise/efeitos dos fármacos , Eletrodos , Estabilidade Enzimática/efeitos dos fármacos , Enzimas Imobilizadas/metabolismo , Simulação de Dinâmica Molecular , Nanoestruturas/química , Ralstonia/enzimologia , Espectrofotometria Infravermelho
19.
J Phys Chem B ; 119(43): 13807-15, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26115011

RESUMO

The regulatory hydrogenase (RH) from Ralstonia eutropha acts as the H2-sensing unit of a two-component system that regulates biosynthesis of the energy conserving hydrogenases of the organism according to the availability of H2. The H2 oxidation activity, which was so far determined in vitro with artificial electron acceptors, has been considered to be insensitive to O2 and CO. It is assumed that bulky isoleucine and phenylalanine amino acid residues close to the NiFe active site "gate" gas access, preventing molecules larger than H2 interacting with the active site. We have carried out sensitive electrochemical measurements to demonstrate that O2 is in fact an inhibitor of H2 oxidation by the RH, and that both H(+) reduction and H2 oxidation are inhibited by CO. Furthermore, we have demonstrated that the inhibitory effect of O2 arises due to interaction of O2 with the active site. Using protein film infrared electrochemistry (PFIRE) under H2 oxidation conditions, in conjunction with solution infrared measurements, we have identified previously unreported oxidized inactive and catalytically active reduced states of the RH active site. These findings suggest that the RH has a rich active site chemistry similar to that of other NiFe hydrogenases.


Assuntos
Monóxido de Carbono/metabolismo , Cupriavidus necator/enzimologia , Técnicas Eletroquímicas , Hidrogenase/metabolismo , Oxigênio/metabolismo , Monóxido de Carbono/química , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Oxirredução , Oxigênio/química , Espectrofotometria Infravermelho
20.
Chem Commun (Camb) ; 51(20): 4283-6, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25672669

RESUMO

Covalent attachment of a microporous polymer network (MPN) on a gold surface is presented. A functional bromophenyl-based self-assembled monolayer (SAM) formed on the gold surface acts as co-monomer in the polymerisation of the MPN yielding homogeneous and robust coatings. Covalent binding of the films to the electrode is confirmed by SEIRAS measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA