Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947124

RESUMO

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Assuntos
Biofilmes , Infecções por Klebsiella , Klebsiella pneumoniae , Temperatura , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/classificação , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Animais , Infecções por Klebsiella/microbiologia , Larva/microbiologia , Plasmídeos/genética , Mariposas/microbiologia , Humanos , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lepidópteros/microbiologia , Viscosidade , Fenótipo , Perfilação da Expressão Gênica
2.
Front Cell Infect Microbiol ; 14: 1372704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601740

RESUMO

In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Fenótipo , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/microbiologia
3.
JAC Antimicrob Resist ; 6(2): dlae021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38449514

RESUMO

Background: MDR pathogens including ESBL- and/or carbapenemase-producing Enterobacterales (ESBL-PE and CPE) increasingly occur worldwide in the One Health context. Objectives: This proof-of-principle study investigated the occurrence of ESBL-PE in surface water in the Ashanti Region in Ghana, sub-Saharan Africa (SSA), and investigated their additional genotypic and phenotypic antimicrobial resistance features as part of the Surveillance Outbreak Response Management and Analysis System (SORMAS). Methods: From 75 water samples overall, from nine small to medium-sized river streams and one pond spatially connected to a channelled water stream in the greater area of Kumasi (capital of the Ashanti Region in Ghana) in 2021, we isolated 121 putative ESBL-PE that were subsequently subjected to in-depth genotypic and phenotypic analysis. Results: Of all 121 isolates, Escherichia coli (70.25%) and Klebsiella pneumoniae (23.14%) were the most prevalent bacterial species. In addition to ESBL enzyme-production of mostly the CTX-M-15 type, one-fifth of the isolates carried carbapenemase genes including blaNDM-5. More importantly, susceptibility testing not only confirmed phenotypic carbapenem resistance, but also revealed two isolates resistant to the just recently approved last-resort antibiotic cefiderocol. In addition, we detected several genes associated with heavy metal resistance. Conclusions: ESBL-PE and CPE occur in surface water sources in and around Kumasi in Ghana. Further surveillance and research are needed to not only improve our understanding of their exact prevalence and the reservoir function of water sources in SSA but should include the investigation of cefiderocol-resistant isolates.

5.
Genome Med ; 15(1): 9, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782220

RESUMO

BACKGROUND: Klebsiella pneumoniae, which is frequently associated with hospital- and community-acquired infections, contains multidrug-resistant (MDR), hypervirulent (hv), non-MDR/non-hv as well as convergent representatives. It is known that mostly international high-risk clonal lineages including sequence types (ST) 11, 147, 258, and 307 drive their global spread. ST395, which was first reported in the context of a carbapenemase-associated outbreak in France in 2010, is a less well-characterized, yet emerging clonal lineage. METHODS: We computationally analyzed a large collection of K. pneumoniae ST395 genomes (n = 297) both sequenced in this study and reported previously. By applying multiple bioinformatics tools, we investigated the core-genome phylogeny and evolution of ST395 as well as distribution of accessory genome elements associated with antibiotic resistance and virulence features. RESULTS: Clustering of the core-SNP alignment revealed four major clades with eight smaller subclades. The subclades likely evolved through large chromosomal recombination, which involved different K. pneumoniae donors and affected, inter alia, capsule and lipopolysaccharide antigen biosynthesis regions. Most genomes contained acquired resistance genes to extended-spectrum cephalosporins, carbapenems, and other antibiotic classes carried by multiple plasmid types, and many were positive for hypervirulence markers, including the siderophore aerobactin. The detection of "hybrid" resistance and virulence plasmids suggests the occurrence of the convergent ST395 pathotype. CONCLUSIONS: To the best of our knowledge, this is the first study that investigated a large international collection of K. pneumoniae ST395 genomes and elucidated phylogenetics and detailed genomic characteristics of this emerging high-risk clonal lineage.


Assuntos
Farmacorresistência Bacteriana , Genes Bacterianos , Klebsiella pneumoniae , beta-Lactamases , Humanos , Antibacterianos , beta-Lactamases/genética , Carbapenêmicos , Genômica , Klebsiella pneumoniae/genética , Plasmídeos , Células Clonais , Farmacorresistência Bacteriana/genética
6.
Microorganisms ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296341

RESUMO

Klebsiella pneumoniae is a common member of the intestinal flora of vertebrates. In addition to opportunistic representatives, hypervirulent (hvKp) and antibiotic-resistant K. pneumoniae (ABR-Kp) occur. While ABR-Kp isolates often cause difficult-to-treat diseases due to limited therapeutic options, hvKp is a pathotype that can infect healthy individuals often leading to recurrent infection. Here, we investigated the clinical K. pneumoniae isolate PBIO3459 obtained from a blood sample, which showed an unusual colony morphology. By combining whole-genome and RNA sequencing with multiple in vitro and in vivo virulence-associated assays, we aimed to define the respective Klebsiella subtype and explore the unusual phenotypic appearance. We demonstrate that PBIO3459 belongs to sequence type (ST)20 and carries no acquired resistance genes, consistent with phenotypic susceptibility tests. In addition, the isolate showed low-level virulence, both at genetic and phenotypic levels. We thus suggest that PBIO3459 is an opportunistic (commensal) K. pneumoniae isolate. Genomic comparison of PBIO3459 with closely related ABR-Kp ST20 isolates revealed that they differed only in resistance genes. Finally, the unusual colony morphology was mainly associated with carbohydrate and amino acid transport and metabolism. In conclusion, our study reveals the characteristics of a Klebsiella sepsis isolate and suggests that opportunistic representatives likely acquire and accumulate antibiotic resistances that subsequently enable their emergence as ABR-Kp pathogens.

7.
Antibiotics (Basel) ; 11(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36290018

RESUMO

Multidrug-resistant (MDR) Enterobacterales, including extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, not only emerge in healthcare settings but also in other habitats, such as livestock and wildlife. The spread of these pathogens, which often combine resistance with high-level virulence, is a growing problem, as infections have become increasingly difficult to treat. Here, we investigated the occurrence of ESBL-producing E. coli and K. pneumoniae in fecal samples from two black-headed gull colonies breeding on two nature conservation islands in Western Pomerania, Germany. In addition to cloacal samples from adult birds (n = 211) and their nestlings (n = 99) during the 2021 breeding season, collective fecal samples (n = 29) were obtained. All samples were screened for ESBL producers, which were then subjected to whole-genome sequencing. We found a total of 12 ESBL-producing E. coli and K. pneumoniae consisting of 11 E. coli and 1 K. pneumoniae, and including the international high-risk E. coli sequence types (ST)131, ST38, and ST58. Eight of the investigated strains had a MDR genotype and carried a large repertoire of virulence-associated genes, including the pap operon, which is important for urinary tract infections. In addition, we identified many genes associated with adherence, biofilm formation, iron uptake, and toxin production. Finally, our analysis revealed the close phylogenetic relationship of ST38 strains with genomes originating from human sources, underlining their zoonotic and pathogenic character. This study highlights the importance of the One Health approach, and thus the interdependence between human and animal health and their surrounding environment.

8.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892394

RESUMO

Studies have previously described the occurrence of multidrug-resistant (MDR) Escherichia coli in human and veterinary medical settings, livestock, and, to a lesser extent, in the environment and food. While they mostly analyzed foodborne E. coli regarding phenotypic and sometimes genotypic antibiotic resistance and basic phylogenetic classification, we have limited understanding of the in vitro and in vivo virulence characteristics and global phylogenetic contexts of these bacteria. Here, we investigated in-depth an E. coli strain (PBIO3502) isolated from a pork sausage in Germany in 2021. Whole-genome sequence analysis revealed sequence type (ST)58, which has an internationally emerging high-risk clonal lineage. In addition to its MDR phenotype that mostly matched the genotype, PBIO3502 demonstrated pronounced virulence features, including in vitro biofilm formation, siderophore secretion, serum resilience, and in vivo mortality in Galleria mellonella larvae. Along with the genomic analysis indicating close phylogenetic relatedness of our strain with publicly available, clinically relevant representatives of the same ST, these results suggest the zoonotic and pathogenic character of PBIO3502 with the potential to cause infection in humans and animals. Additionally, our study highlights the necessity of the One Health approach while integrating human, animal, and environmental health, as well as the role of meat products and food chains in the putative transmission of MDR pathogens.

9.
Microbiol Spectr ; 10(3): e0014822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35435751

RESUMO

The ability of extensively drug-resistant (XDR) Klebsiella pneumoniae to rapidly acquire resistance to novel antibiotics is a global concern. Moreover, Klebsiella clonal lineages that successfully combine resistance and hypervirulence have increasingly occurred during the last years. However, the underlying mechanisms of counteracting fitness costs that accompany antibiotic resistance acquisition remain largely unexplored. Here, we investigated whether and how an XDR sequence type (ST)307 K. pneumoniae strain developed resistance against the novel drug combination ceftazidime-avibactam (CAZ-AVI) using experimental evolution. In addition, we performed in vitro and in vivo assays, molecular modeling, and bioinformatics to identify resistance-conferring processes and explore the resulting decrease in fitness and virulence. The subsequent amelioration of the initial costs was also addressed. We demonstrate that distinct mutations of the major nonselective porin OmpK36 caused CAZ-AVI resistance that persists even upon following a second experimental evolution without antibiotic selection pressure and that the Klebsiella strain compensates the resulting fitness and virulence costs. Furthermore, the genomic and transcriptomic analyses suggest the envelope stress response regulator rpoE and associated RpoE-regulated genes as drivers of this compensation. This study verifies the crucial role of OmpK36 in CAZ-AVI resistance and shows the rapid adaptation of a bacterial pathogen to compensate fitness- and virulence-associated resistance costs, which possibly contributes to the emergence of successful clonal lineages. IMPORTANCE Extensively drug-resistant Klebsiella pneumoniae causing major outbreaks and severe infections has become a significant challenge for health care systems worldwide. Rapid resistance development against last-resort therapeutics like ceftazidime-avibactam is a significant driver for the accelerated emergence of such pathogens. Therefore, it is crucial to understand what exactly mediates rapid resistance acquisition and how bacterial pathogens counteract accompanying fitness and virulence costs. By combining bioinformatics with in vitro and in vivo phenotypic approaches, this study revealed the critical role of mutations in a particular porin channel in ceftazidime-avibactam resistance development and a major metabolic regulator for ameliorating fitness and virulence costs. These results highlight underlying mechanisms and contribute to the understanding of factors important for the emergence of successful bacterial pathogens.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceftazidima , Combinação de Medicamentos , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Porinas , Virulência/genética , beta-Lactamases/genética
10.
Microorganisms ; 10(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336178

RESUMO

Antimicrobial resistance is an increasing global problem and complicates successful treatments of bacterial infections in animals and humans. We conducted a longitudinal study in Mecklenburg-Western Pomerania to compare the occurrence of ESBL-producing Escherichia (E.) coli in three conventional and four organic pig farms. ESBL-positive E. coli, especially of the CTX-M type, were found in all fattening farms, confirming that antimicrobial resistance is widespread in pig fattening and affects both conventional and organic farms. The percentage of ESBL-positive pens was significantly higher on conventional (55.2%) than on organic farms (44.8%) with similar proportions of ESBL-positive pens on conventional farms (54.3-61.9%) and a wide variation (7.7-84.2%) on organic farms. Metadata suggest that the farms of origin, from which weaner pigs were purchased, had a major influence on the occurrence of ESBL-producing E. coli in the fattening farms. Resistance screening showed that the proportion of pens with multidrug-resistant E. coli was similar on conventional (28.6%) and organic (31.5%) farms. The study shows that ESBL-positive E. coli play a major role in pig production and that urgent action is needed to prevent their spread.

11.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502111

RESUMO

BACKGROUND: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes. hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically in particular through hypermucoviscosity and increased siderophore production, enabled by the presence of the respective virulence genes, which are partly carried on plasmids. METHODS: Here, we analyzed two K. pneumoniae isolates of a human patient that caused severe multiple site infection. By applying both genomic and phenotypic experiments and combining basic science with clinical approaches, we aimed at characterizing the clinical background as well as the two isolates in-depth. This also included bioinformatics analysis of a chromosomal virulence plasmid integration event. RESULTS: Our genomic analysis revealed that the two isolates were clonal and belonged to sequence type 420, which is not only the first description of this K. pneumoniae subtype in Germany but also suggests belonging to the hvKp pathotype. The latter was supported by the clinical appearance and our phenotypic findings revealing increased siderophore production and hypermucoviscosity similar to an archetypical, hypervirulent K. pneumoniae strain. In addition, our in-depth bioinformatics analysis suggested the insertion of a hypervirulence plasmid in the bacterial chromosome, mediated by a new IS5 family sub-group IS903 insertion sequence designated ISKpn74. CONCLUSION: Our study contributes not only to the understanding of hvKp and the association between hypervirulence and clinical outcomes but reveals the chromosomal integration of a virulence plasmid, which might lead to tremendous public health implications.


Assuntos
Cromossomos Bacterianos/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Idoso , Humanos , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Masculino , Recombinação Genética , Sideróforos/metabolismo , Virulência/genética
12.
Microorganisms ; 9(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206177

RESUMO

The emergence of carbapenemase-producing Enterobacteriaceae limits therapeutic options and presents a major public health problem. Resistances to carbapenems are mostly conveyed by metallo-beta-lactamases (MBL) including VIM, which are often encoded on resistance plasmids. We characterized four VIM-positive isolates that were obtained as part of a routine diagnostic screening from two laboratories in north-eastern Germany between June and August 2020. Whole-genome sequencing was performed to address (a) phylogenetic properties, (b) plasmid content, and (c) resistance gene carriage. In addition, we performed phenotypic antibiotic and mercury resistance analyses. The genomic analysis revealed three different bacterial species including C. freundii, E. coli and K. oxytoca with four different sequence types. All isolates were geno- and phenotypically multidrug-resistant (MDR) and the phenotypic profile was explained by the underlying resistance gene content. Three isolates of four carried nearly identical VIM-1-resistance plasmids, which in addition encoded a mercury resistance operon and showed some similarity to two publicly available plasmid sequences from sources other than the two laboratories above. Our results highlight the circulation of a nearly identical IncN-type VIM-1-resistance plasmid in different Enterobacteriaceae in north-eastern Germany.

13.
Antibiotics (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063980

RESUMO

Minimal inhibitory concentration-based pharmacokinetic/pharmacodynamic (PK/PD) indices are commonly applied to antibiotic dosing optimisation, but their informative value is limited, as they do not account for bacterial growth dynamics over time. We aimed to comprehensively characterise the exposure-effect relationship of levofloxacin against Escherichia coli and quantify strain-specific characteristics applying novel PK/PD parameters. In vitro infection model experiments were leveraged to explore the exposure-effect relationship of three clinical Escherichia coli isolates, harbouring different genomic fluoroquinolone resistance mechanisms, under constant levofloxacin concentrations or human concentration-time profiles (≤76 h). As an exposure metric, the 'cumulative area under the levofloxacin-concentration time curve' was determined. The antibiotic effect was assessed as the 'cumulative area between the growth control and the bacterial-killing and -regrowth curve'. PK/PD modelling was applied to characterise the exposure-effect relationship and derive novel PK/PD parameters. A sigmoidal Emax model with an inhibition term best characterised the exposure-effect relationship and allowed for discrimination between two isolates sharing the same MIC value. Strain- and exposure-pattern-dependent differences were captured by the PK/PD parameters and elucidated the contribution of phenotypic adaptation to bacterial regrowth. The novel exposure and effect metrics and derived PK/PD parameters allowed for comprehensive characterisation of the isolates and could be applied to overcome the limitations of the MIC in clinical antibiotic dosing decisions, drug research and preclinical development.

14.
Antibiotics (Basel) ; 10(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065908

RESUMO

Antibiotic-resistant Enterobacteriaceae are regularly detected in livestock. As pathogens, they cause difficult-to-treat infections and, as commensals, they may serve as a source of resistance genes for other bacteria. Slaughterhouses produce significant amounts of wastewater containing antimicrobial-resistant bacteria (AMRB), which are released into the environment. We analyzed the wastewater from seven slaughterhouses (pig and poultry) for extended-spectrum ß-lactamase (ESBL)-carrying and colistin-resistant Enterobacteriaceae. AMRB were regularly detected in pig and poultry slaughterhouse wastewaters monitored here. All 25 ESBL-producing bacterial strains (19 E. coli and six K. pneumoniae) isolated from poultry slaughterhouses were multidrug-resistant. In pig slaughterhouses 64% (12 of 21 E. coli [57%] and all four detected K. pneumoniae [100%]) were multidrug-resistant. Regarding colistin, resistant Enterobacteriaceae were detected in 54% of poultry and 21% of pig water samples. Carbapenem resistance was not detected. Resistant bacteria were found directly during discharge of wastewaters from abattoirs into water bodies highlighting the role of slaughterhouses for environmental surface water contamination.

15.
Front Microbiol ; 12: 662575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054764

RESUMO

Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among strains, and for their potential role as drivers for the spread of antibiotic resistance. We show that among the 30 different sequence types (ST) detected were the pandemic clonal lineages ST131, ST648 and ST410, which combine high-level antimicrobial resistance with virulence. In addition to the frequently found resistance genes bla CTX-M-15 , tet(34), and aph(6)-Id, we identified csg genes, which are required for curli fiber synthesis and thus biofilm formation. Numerous strains harbored multiple virulence-associated genes (VAGs) including pap (P fimbriae adhesion cluster), fim (type I fimbriae) and chu (Chu heme uptake system). Furthermore, we found phylogenetic relationships among strains from patients and their caregivers or related community members and animals, which indicates transmission of pathogens. Also, we demonstrated the presence and potential transfer of identical/similar ESBL-plasmids in different strains from the Rwandan setting and when compared to an external plasmid. This study highlights the circulation of clinically relevant, pathogenic ESBL-producing E. coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.

16.
Environ Microbiol ; 23(6): 3099-3115, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876529

RESUMO

Microplastics in marine ecosystems are colonized by diverse prokaryotic and eukaryotic communities. How these communities and their functional profiles are shaped by the artificial surfaces remains broadly unknown. In order to close this knowledge gap, we set up an in situ experiment with pellets of the polyolefin polymer polyethylene (PE), the aromatic hydrocarbon polymer polystyrene (PS), and wooden beads along a coastal to estuarine gradient in the Baltic Sea, Germany. We used an integrated metagenomics/metaproteomics approach to evaluate the genomic potential as well as protein expression levels of aquatic plastic biofilms. Our results suggest that material properties had a minor influence on the plastic-associated assemblages, as genomic and proteomic profiles of communities associated with the structurally different polymers PE and PS were highly similar, hence polymer-unspecific. Instead, it seemed that these communities were shaped by biogeographic factors. Wood, on the other hand, induced the formation of substrate-specific biofilms and served as nutrient source itself. Our study indicates that, while PE and PS microplastics may be relevant in the photic zone as opportunistic colonization grounds for phototrophic microorganisms, they appear not to be subject to biodegradation or serve as vectors for pathogenic microorganisms in marine habitats.


Assuntos
Microplásticos , Poluentes Químicos da Água , Biofilmes , Ecossistema , Plásticos , Proteômica , Propriedades de Superfície
17.
Genome Med ; 12(1): 113, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298160

RESUMO

BACKGROUND: Antibiotic-resistant Klebsiella pneumoniae are a major cause of hospital- and community-acquired infections, including sepsis, liver abscess, and pneumonia, driven mainly by the emergence of successful high-risk clonal lineages. The K. pneumoniae sequence type (ST) 307 lineage has appeared in several different parts of the world after first being described in Europe in 2008. From June to October 2019, we recorded an outbreak of an extensively drug-resistant ST307 lineage in four medical facilities in north-eastern Germany. METHODS: Here, we investigated these isolates and those from subsequent cases in the same facilities. We performed whole-genome sequencing to study phylogenetics, microevolution, and plasmid transmission, as well as phenotypic experiments including growth curves, hypermucoviscosity, siderophore secretion, biofilm formation, desiccation resilience, serum survival, and heavy metal resistance for an in-depth characterization of this outbreak clone. RESULTS: Phylogenetics suggest a homogenous phylogram with several sub-clades containing either isolates from only one patient or isolates originating from different patients, suggesting inter-patient transmission. We identified three large resistance plasmids, carrying either NDM-1, CTX-M-15, or OXA-48, which K. pneumoniae ST307 likely donated to other K. pneumoniae isolates of different STs and even other bacterial species (e.g., Enterobacter cloacae) within the clinical settings. Several chromosomally and plasmid-encoded, hypervirulence-associated virulence factors (e.g., yersiniabactin, metabolite transporter, aerobactin, and heavy metal resistance genes) were identified in addition. While growth, biofilm formation, desiccation resilience, serum survival, and heavy metal resistance were comparable to several control strains, results from siderophore secretion and hypermucoviscosity experiments revealed superiority of the ST307 clone, similar to an archetypical, hypervirulent K. pneumoniae strain (hvKP1). CONCLUSIONS: The combination of extensive drug resistance and virulence, partly conferred through a "mosaic" plasmid carrying both antibiotic resistance and hypervirulence-associated features, demonstrates serious public health implications.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ferro/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Surtos de Doenças , Genes Bacterianos/genética , Alemanha/epidemiologia , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/crescimento & desenvolvimento , Filogenia , Plasmídeos , Polimorfismo de Nucleotídeo Único , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
18.
Front Microbiol ; 11: 1699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793163

RESUMO

BACKGROUND: In addition to the broad dissemination of pathogenic extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli in human and veterinary medicine and the community, their occurrence in wildlife and the environment is a growing concern. Wild birds in particular often carry clinically relevant ESBL-producing E. coli. OBJECTIVES: We analyzed ESBL-producing and non-ESBL-producing E. coli obtained from wild birds in Mongolia to identify phylogenetic and functional characteristics that would explain the predominance of a particular E. coli clonal lineage in this area. METHODS: We investigated ESBL-producing E. coli using whole-genome sequencing and phylogenetics to describe the population structure, resistance and virulence features and performed phenotypic experiments like biofilm formation and adhesion to epithelial cells. We compared the phenotypic characteristics to non-ESBL-producing E. coli from the same background (Mongolian wild birds) and genomic results to publicly available genomes. RESULTS AND CONCLUSION: We found ESBL-producing E. coli sequence type (ST) 1159 among wild birds in Mongolia. This clonal lineage carried virulence features typical for extra-intestinal pathogenic or enterotoxigenic E. coli. Comparative functional experiments suggested no burden of resistance in the ST1159 isolates, which is despite their carriage of ESBL-plasmids. Wild birds will likely disseminate these antibiotic-resistant pathogens further during migration.

19.
Antimicrob Resist Infect Control ; 9(1): 34, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066506

RESUMO

Multidrug-resistant gram-negative (MRGN) bacteria are a serious threat to global health. We used genomics to study MRGN obtained from houseflies in a tertiary Rwandan hospital. Our analysis revealed a high abundance of different MRGN including E. coli pathogenic lineage ST131 suggesting the important role of flies in disseminating highly virulent pathogens in clinical settings and beyond.


Assuntos
Dípteros/microbiologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/classificação , Sequenciamento Completo do Genoma/métodos , Animais , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genoma Bacteriano , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Plasmídeos/genética , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Ruanda , Centros de Atenção Terciária , Fatores de Virulência/genética
20.
ISME J ; 14(2): 649-656, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680119

RESUMO

Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host-microbe associations. However, how host-symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host-microbe interactions can be quite variable, even between closely related systems.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Mytilidae/microbiologia , Simbiose/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Anidrases Carbônicas/metabolismo , Crescimento Quimioautotrófico , Genoma Bacteriano/genética , Brânquias/metabolismo , Interações entre Hospedeiro e Microrganismos , Mytilidae/metabolismo , Proteômica , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA