Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870625

RESUMO

OBJECTIVES: The purpose of this study was to determine the influence of dose reduction on a commercially available lung cancer prediction convolutional neuronal network (LCP-CNN). METHODS: CT scans from a cohort provided by the local lung cancer center (n = 218) with confirmed pulmonary malignancies and their corresponding reduced dose simulations (25% and 5% dose) were subjected to the LCP-CNN. The resulting LCP scores (scale 1-10, increasing malignancy risk) and the proportion of correctly classified nodules were compared. The cohort was divided into a low-, medium-, and high-risk group based on the respective LCP scores; shifts between the groups were studied to evaluate the potential impact on nodule management. Two different malignancy risk score thresholds were analyzed: a higher threshold of ≥ 9 ("rule-in" approach) and a lower threshold of > 4 ("rule-out" approach). RESULTS: In total, 169 patients with 196 nodules could be included (mean age ± SD, 64.5 ± 9.2 year; 49% females). Mean LCP scores for original, 25% and 5% dose levels were 8.5 ± 1.7, 8.4 ± 1.7 (p > 0.05 vs. original dose) and 8.2 ± 1.9 (p < 0.05 vs. original dose), respectively. The proportion of correctly classified nodules with the "rule-in" approach decreased with simulated dose reduction from 58.2 to 56.1% (p = 0.34) and to 52.0% for the respective dose levels (p = 0.01). For the "rule-out" approach the respective values were 95.9%, 96.4%, and 94.4% (p = 0.12). When reducing the original dose to 25%/5%, eight/twenty-two nodules shifted to a lower, five/seven nodules to a higher malignancy risk group. CONCLUSION: CT dose reduction may affect the analyzed LCP-CNN regarding the classification of pulmonary malignancies and potentially alter pulmonary nodule management. CLINICAL RELEVANCE STATEMENT: Utilization of a "rule-out" approach with a lower malignancy risk threshold prevents underestimation of the nodule malignancy risk for the analyzed software, especially in high-risk cohorts. KEY POINTS: • LCP-CNN may be affected by CT image parameters such as noise resulting from low-dose CT acquisitions. • CT dose reduction can alter pulmonary nodule management recommendations by affecting the outcome of the LCP-CNN. • Utilization of a lower malignancy risk threshold prevents underestimation of pulmonary malignancies in high-risk cohorts.

2.
Stud Health Technol Inform ; 278: 126-133, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34042885

RESUMO

Several standards and frameworks have been described in existing literature and technical manuals that contribute to solving the interoperability problem. Their data models usually focus on clinical data and only support healthcare delivery processes. Research processes including cross organizational cohort size estimation, approvals and reviews of research proposals, consent checks, record linkage and pseudonymization need to be supported within the HiGHmed medical informatics consortium. The open source HiGHmed Data Sharing Framework implements a distributed business process engine for executing arbitrary biomedical research and healthcare processes modeled and executed using BPMN 2.0 while exchanging information using FHIR R4 resources. The proposed reference implementation is currently being rolled out to eight university hospitals in Germany as well as a trusted third party and available open source under the Apache 2.0 license.


Assuntos
Pesquisa Biomédica , Informática Médica , Atenção à Saúde , Alemanha , Humanos , Disseminação de Informação
3.
Stud Health Technol Inform ; 278: 142-149, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34042887

RESUMO

The process of consolidating medical records from multiple institutions into one data set makes privacy-preserving record linkage (PPRL) a necessity. Most PPRL approaches, however, are only designed to link records from two institutions, and existing multi-party approaches tend to discard non-matching records, leading to incomplete result sets. In this paper, we propose a new algorithm for federated record linkage between multiple parties by a trusted third party using record-level bloom filters to preserve patient data privacy. We conduct a study to find optimal weights for linkage-relevant data fields and are able to achieve 99.5% linkage accuracy testing on the Febrl record linkage dataset. This approach is integrated into an end-to-end pseudonymization framework for medical data sharing.


Assuntos
Segurança Computacional , Disseminação de Informação , Algoritmos , Humanos , Registro Médico Coordenado , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA