Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell Genom ; 3(8): 100349, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601968

RESUMO

Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.

2.
Cell Rep ; 41(10): 111749, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476850

RESUMO

Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability.


Assuntos
Estruturas R-Loop , RNA , Humanos , DNA Helicases/genética
3.
Mol Cell Biol ; 41(12): e0025121, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34543116

RESUMO

Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptors regulate immune and inflammatory responses by activating the NF-κB pathway. Here, we report that B-cell-specific loss of dynein light chain 1 (DYNLL1, LC8) or its designated transcription factor ASCIZ (ATMIN) leads to severely reduced in vivo antibody responses to TLR4-dependent but not T-cell-dependent antigens in mice. This defect was independent of DYNLL1's established roles in modulating BIM-dependent apoptosis and 53BP1-dependent antibody class-switch recombination. In B cells and fibroblasts, the ASCIZ-DYNLL1 axis was required for TLR4-, IL-1-, and CD40-mediated NF-κB pathway activation but dispensable for antigen receptor and tumor necrosis factor α (TNF-α) signaling. In contrast to previous reports that overexpressed DYNLL1 directly inhibits the phosphorylation and degradation of the NF-κB inhibitor IκBα, we found here that under physiological conditions, DYNLL1 is required for signal-specific activation of the NF-κB pathway upstream of IκBα. Our data identify DYNLL1 as a signal-specific regulator of the NF-κB pathway and indicate that it may act as a universal modulator of TLR4 (and IL-1) signaling with wide-ranging roles in inflammation and immunity.


Assuntos
Formação de Anticorpos/imunologia , Dineínas do Citoplasma/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/imunologia , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/imunologia , Antígenos CD40/metabolismo , Células Cultivadas , Dineínas do Citoplasma/genética , Switching de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/imunologia
4.
PLoS Genet ; 15(7): e1008266, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31276497

RESUMO

Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by skin rash (poikiloderma), skeletal dysplasia, small stature, juvenile cataracts, sparse or absent hair, and predisposition to specific malignancies such as osteosarcoma and hematological neoplasms. RTS is caused by germ-line mutations in RECQL4, a RecQ helicase family member. In vitro studies have identified functions for the ATP-dependent helicase of RECQL4. However, its specific role in vivo remains unclear. To determine the physiological requirement and the biological functions of Recql4 helicase activity, we generated mice with an ATP-binding-deficient knock-in mutation (Recql4K525A). Recql4K525A/K525A mice were strikingly normal in terms of embryonic development, body weight, hematopoiesis, B and T cell development, and physiological DNA damage repair. However, mice bearing two distinct truncating mutations Recql4G522Efs and Recql4R347*, that abolished not only the helicase but also the C-terminal domain, developed a profound bone marrow failure and decrease in survival similar to a Recql4 null allele. These results demonstrate that the ATP-dependent helicase activity of Recql4 is not essential for its physiological functions and that other domains might contribute to this phenotype. Future studies need to be performed to elucidate the complex interactions of RECQL4 domains and its contribution to the development of RTS.


Assuntos
Trifosfato de Adenosina/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/genética , Animais , Linfócitos B/metabolismo , Sítios de Ligação , Peso Corporal , Dano ao DNA , Modelos Animais de Doenças , Desenvolvimento Embrionário , Técnicas de Introdução de Genes , Hematopoese , Humanos , Camundongos , Fenótipo , Domínios Proteicos , RecQ Helicases/química , Linfócitos T/metabolismo
5.
Hum Mol Genet ; 28(15): 2573-2588, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009951

RESUMO

Mutations in subunits of the cilia-specific cytoplasmic dynein-2 (CD2) complex cause short-rib thoracic dystrophy syndromes (SRTDs), characterized by impaired bone growth and life-threatening perinatal respiratory complications. Different SRTD mutations result in varying disease severities. It remains unresolved whether this reflects the extent of retained hypomorphic protein functions or relative importance of the affected subunits for the activity of the CD2 holoenzyme. To define the contribution of the LC8-type dynein light chain subunit to the CD2 complex, we have generated Dynll1-deficient mouse strains, including the first-ever conditional knockout (KO) mutant for any CD2 subunit. Germline Dynll1 KO mice exhibit a severe ciliopathy-like phenotype similar to mice lacking another CD2 subunit, Dync2li1. Limb mesoderm-specific loss of Dynll1 results in severe bone shortening similar to human SRTD patients. Mechanistically, loss of Dynll1 leads to a partial depletion of other SRTD-related CD2 subunits, severely impaired retrograde intra-flagellar transport, significant thickening of primary cilia and cilia signaling defects. Interestingly, phenotypes of Dynll1-deficient mice are very similar to entirely cilia-deficient Kif3a/Ift88-null mice, except that they never present with polydactyly and retain relatively higher signaling outputs in parts of the hedgehog pathway. Compared to complete loss of Dynll1, maintaining very low DYNLL1 levels in mice lacking the Dynll1-transcription factor ASCIZ (ATMIN) results in significantly attenuated phenotypes and improved CD2 protein levels. The results suggest that primary cilia can maintain some functionality in the absence of intact CD2 complexes and provide a viable animal model for the analysis of the underlying bone development defects of SRTDs.


Assuntos
Doenças do Desenvolvimento Ósseo/metabolismo , Cílios/metabolismo , Ciliopatias/metabolismo , Dineínas do Citoplasma/genética , Osteogênese , Animais , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/fisiopatologia , Células Cultivadas , Cílios/fisiologia , Ciliopatias/genética , Ciliopatias/fisiopatologia , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/fisiologia , Extremidades/patologia , Extremidades/fisiopatologia , Proteínas Hedgehog/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
Nat Commun ; 9(1): 5406, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559443

RESUMO

53BP1 controls a specialized non-homologous end joining (NHEJ) pathway that is essential for adaptive immunity, yet oncogenic in BRCA1 mutant cancers. Intra-chromosomal DNA double-strand break (DSB) joining events during immunoglobulin class switch recombination (CSR) require 53BP1. However, in BRCA1 mutant cells, 53BP1 blocks homologous recombination (HR) and promotes toxic NHEJ, resulting in genomic instability. Here, we identify the protein dimerization hub-DYNLL1-as an organizer of multimeric 53BP1 complexes. DYNLL1 binding stimulates 53BP1 oligomerization, and promotes 53BP1's recruitment to, and interaction with, DSB-associated chromatin. Consequently, DYNLL1 regulates 53BP1-dependent NHEJ: CSR is compromised upon deletion of Dynll1 or its transcriptional regulator Asciz, or by mutation of DYNLL1 binding motifs in 53BP1; furthermore, Brca1 mutant cells and tumours are rendered resistant to poly-ADP ribose polymerase (PARP) inhibitor treatments upon deletion of Dynll1 or Asciz. Thus, our results reveal a mechanism that regulates 53BP1-dependent NHEJ and the therapeutic response of BRCA1-deficient cancers.


Assuntos
Proteína BRCA1/genética , Dineínas do Citoplasma/metabolismo , Reparo do DNA por Junção de Extremidades/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Feminino , Instabilidade Genômica/genética , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Elife ; 72018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714690

RESUMO

The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.


Assuntos
Dineínas do Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Regulação da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Dineínas do Citoplasma/química , Dineínas do Citoplasma/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Dineínas/química , Dineínas/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
9.
Front Immunol ; 9: 592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623080

RESUMO

The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.


Assuntos
Apoptose/genética , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Homeostase , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Deleção de Genes , Genes myc , Genótipo , Imunofenotipagem , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Fenótipo
10.
PLoS Genet ; 13(9): e1007010, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922373

RESUMO

Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, "natural" antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHEL Igm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis.


Assuntos
Linfócitos B/metabolismo , Dineínas/genética , Linfoma de Células B/genética , Fatores de Transcrição/genética , Animais , Linfócitos B/imunologia , Linhagem da Célula/genética , Dineínas do Citoplasma , Dineínas/metabolismo , Regulação da Expressão Gênica , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Linfoma de Células B/patologia , Camundongos , Cavidade Peritoneal , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
11.
DNA Repair (Amst) ; 57: 29-34, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28648892

RESUMO

The ATM kinase plays critical roles in the response to DNA double-strand breaks, and can also be activated by prolonged DNA replication blocks. It has recently been proposed that replication stress-dependent ATM activation is mediated by ASCIZ (also known as ATMIN, ZNF822), an essential developmental transcription factor. In contrast, we show here that ATM activation, and phosphorylation of its substrates KAP1, p53 and H2AX in response to the replication blocking agent aphidicolin was unaffected in both immortalized and primary ASCIZ/ATMIN-deficient murine embryonic fibroblasts compared to control cells. Similar results were also obtained in human ASCIZ/ATMIN-deleted lymphoma cells. The results demonstrate that ASCIZ/ATMIN is dispensable for ATM activation, and contradict the previously reported dependence of ATM on ASCIZ/ATMIN.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Afidicolina/farmacologia , Afidicolina/toxicidade , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Camundongos , Estresse Fisiológico/efeitos dos fármacos
12.
Mol Cell ; 65(2): 247-259, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-27986371

RESUMO

Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Anemia de Fanconi/metabolismo , Ubiquitinação , Linhagem Celular , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação E da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fatores de Tempo , Transfecção , Proteases Específicas de Ubiquitina/metabolismo
13.
Cell Rep ; 14(6): 1488-1499, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26832406

RESUMO

How MYC promotes the development of cancer remains to be fully understood. Here, we report that the Zn(2+)-finger transcription factor ASCIZ (ATMIN, ZNF822) synergizes with MYC to activate the expression of dynein light chain (DYNLL1, LC8) in the murine Eµ-Myc model of lymphoma. Deletion of Asciz or Dynll1 prevented the abnormal expansion of pre-B cells in pre-cancerous Eµ-Myc mice and potentiated the pro-apoptotic activity of MYC in pre-leukemic immature B cells. Constitutive loss of Asciz or Dynll1 delayed lymphoma development in Eµ-Myc mice, and induced deletion of Asciz in established lymphomas extended the survival of tumor-bearing mice. We propose that ASCIZ-dependent upregulation of DYNLL1 levels is essential for the development and expansion of MYC-driven lymphomas by enabling the survival of pre-neoplastic and malignant cells.


Assuntos
Dineínas/genética , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/genética , Células Precursoras de Linfócitos B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Animais , Apoptose , Linfócitos B/imunologia , Linfócitos B/patologia , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Dineínas do Citoplasma , Modelos Animais de Doenças , Dineínas/deficiência , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/mortalidade , Linfoma de Células B/patologia , Camundongos , Células Precursoras de Linfócitos B/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/deficiência
14.
Biomed Res ; 35(4): 243-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25152033

RESUMO

S100A1 and S100B are induced by the SOX trio transcription factors (SOX9, SOX5, and SOX6) in chondrocytes, and inhibit their hypertrophic differentiation in culture. However, functional roles of S100A1 and S100B during in vivo skeletal development are yet to be determined. Here we show that mice deficient of both the S100a1 and S100b genes displayed normal skeletal growth from embryonic stage to adulthood. Although no compensatory upregulation of other S100 family members was observed in S100a1/S100b double mutants, the related S100a2, S100a4, S100a10, and S100a11 were expressed at similarly high levels to S100a1 and S100b in mouse primary chondrocytes. Furthermore, overexpression of these other S100 members suppressed the hypertrophic differentiation of chondrocytes in vitro as efficiently as S100A1 and S100B. Taken together, the present study demonstrates that S100A1 and S100B are dispensable for endochondral ossification during skeletal development, most likely because their deficiency may be masked by other S100 proteins which have similar functions to those of S100A1 and S100B.


Assuntos
Osteogênese/genética , Osteogênese/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteínas S100/genética , Animais , Diferenciação Celular , Linhagem Celular , Condrócitos/citologia , Camundongos , Camundongos Knockout , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo , Regulação para Cima
15.
J Clin Invest ; 124(8): 3551-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24960165

RESUMO

Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases.


Assuntos
Hematopoese/fisiologia , RecQ Helicases/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/enzimologia , Síndrome de Rothmund-Thomson/genética , Animais , Apoptose , Transplante de Medula Óssea , Dano ao DNA , Replicação do DNA , Modelos Animais de Doenças , Instabilidade Genômica , Hematopoese/genética , Células-Tronco Hematopoéticas/enzimologia , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/enzimologia , Células-Tronco Multipotentes/patologia , Mutação , Fenótipo , RecQ Helicases/deficiência
16.
Genetics ; 196(2): 443-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336747

RESUMO

The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Regulação da Expressão Gênica , Mitose , Dedos de Zinco/fisiologia , Animais , Apoptose/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Masculino , Organogênese/genética , Fenótipo , Interferência de RNA , Fuso Acromático/genética , Fuso Acromático/metabolismo , Asas de Animais/crescimento & desenvolvimento
17.
Mol Cell Proteomics ; 13(2): 551-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24302356

RESUMO

The cell cycle checkpoint kinases play central roles in the genome maintenance of eukaryotes. Activation of the yeast checkpoint kinase Rad53 involves Rad9 or Mrc1 adaptor-mediated phospho-priming by Mec1 kinase, followed by auto-activating phosphorylation within its activation loop. However, the mechanisms by which these adaptors regulate priming phosphorylation of specific sites and how this then leads to Rad53 activation remain poorly understood. Here we used quantitative mass spectrometry to delineate the stepwise phosphorylation events in the activation of endogenous Rad53 in response to S phase alkylation DNA damage, and we show that the two Rad9 and Mrc1 adaptors, the four N-terminal Mec1-target TQ sites of Rad53 (Rad53-SCD1), and Rad53-FHA2 coordinate intimately for optimal priming phosphorylation to support substantial Rad53 auto-activation. Rad9 or Mrc1 alone can mediate surprisingly similar Mec1 target site phosphorylation patterns of Rad53, including previously undetected tri- and tetraphosphorylation of Rad53-SCD1. Reducing the number of TQ motifs turns the SCD1 into a proportionally poorer Mec1 target, which then requires the presence of both Mrc1 and Rad9 for sufficient priming and auto-activation. The phosphothreonine-interacting Rad53-FHA domains, particularly FHA2, regulate phospho-priming by interacting with the checkpoint mediators but do not seem to play a major role in the phospho-SCD1-dependent auto-activation step. Finally, mutation of all four SCD1 TQ motifs greatly reduces Rad53 activation but does not eliminate it, and residual Rad53 activity in this mutant is dependent on Rad9 but not Mrc1. Altogether, our results provide a paradigm for how phosphorylation site clusters and checkpoint mediators can be involved in the regulation of signaling relay in protein kinase cascades in vivo and elucidate an SCD1-independent Rad53 auto-activation mechanism through the Rad9 pathway. The work also demonstrates the power of mass spectrometry for in-depth analyses of molecular mechanisms in cellular signaling in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Espectrometria de Massas/métodos , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alquilantes/farmacologia , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/genética , Dano ao DNA/fisiologia , Ativação Enzimática , Homeostase , Organismos Geneticamente Modificados , Fosforilação , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
G3 (Bethesda) ; 3(10): 1649-59, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23893744

RESUMO

During its natural life cycle, budding yeast (Saccharomyces cerevisiae) has to adapt to drastically changing environments, but how environmental-sensing pathways are linked to adaptive gene expression changes remains incompletely understood. Here, we describe two closely related yeast hEST1A-B (SMG5-6)-like proteins termed Esl1 and Esl2 that contain a 14-3-3-like domain and a putative PilT N-terminus ribonuclease domain. We found that, unlike their metazoan orthologs, Esl1 and Esl2 were not involved in nonsense-mediated mRNA decay or telomere maintenance pathways. However, in genome-wide expression array analyses, absence of Esl1 and Esl2 led to more than two-fold deregulation of ∼50 transcripts, most of which were expressed inversely to the appropriate metabolic response to environmental nutrient supply; for instance, normally glucose-repressed genes were derepressed in esl1Δ esl2Δ double mutants during growth in a high-glucose environment. Likewise, in a genome-wide synthetic gene array screen, esl1Δ esl2Δ double mutants were synthetic sick with null mutations for Rim8 and Dfg16, which form the environmental-sensing complex of the Rim101 pH response gene expression pathway. Overall, these results suggest that Esl1 and Esl2 contribute to the regulation of adaptive gene expression responses of environmental sensing pathways.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Transcrição Gênica , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
19.
Mol Cell Biol ; 33(16): 3202-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754745

RESUMO

The essential yeast kinases Mec1 and Rad53, or human ATR and Chk1, are crucial for checkpoint responses to exogenous genotoxic agents, but why they are also required for DNA replication in unperturbed cells remains poorly understood. Here we report that even in the absence of DNA-damaging agents, the rad53-4AQ mutant, lacking the N-terminal Mec1 phosphorylation site cluster, is synthetic lethal with a deletion of the RAD9 DNA damage checkpoint adaptor. This phenotype is caused by an inability of rad53-4AQ to activate the downstream kinase Dun1, which then leads to reduced basal deoxynucleoside triphosphate (dNTP) levels, spontaneous replication fork stalling, and constitutive activation of and dependence on S phase DNA damage checkpoints. Surprisingly, the kinase-deficient rad53-K227A mutant does not share these phenotypes but is rendered inviable by additional phosphosite mutations that prevent its binding to Dun1. The results demonstrate that ultralow Rad53 catalytic activity is sufficient for normal replication of undamaged chromosomes as long as it is targeted toward activation of the effector kinase Dun1. Our findings indicate that the essential S phase function of Rad53 is comprised by the combination of its role in regulating basal dNTP levels and its compensatory kinase function if dNTP levels are perturbed.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , DNA Fúngico/genética , Ativação Enzimática , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteólise , Fase S , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Genetics ; 194(2): 403-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23535383

RESUMO

Telomere repeat-like sequences at DNA double-strand breaks (DSBs) inhibit DNA damage signaling and serve as seeds to convert DSBs to new telomeres in mutagenic chromosome healing pathways. We find here that the response to seed-containing DSBs differs fundamentally between budding yeast (Saccharomyces cerevisiae) cells that maintain their telomeres via telomerase and so-called postsenescence survivors that use recombination-based alternative lengthening of telomere (ALT) mechanisms. Whereas telomere seeds are efficiently elongated by telomerase, they remain remarkably stable without de novo telomerization or extensive end resection in telomerase-deficient (est2Δ, tlc1Δ) postsenescence survivors. This telomere seed hyper-stability in ALT cells is associated with, but not caused by, prolonged DNA damage checkpoint activity (RAD9, RAD53) compared to telomerase-positive cells or presenescent telomerase-negative cells. The results indicate that both chromosome healing and anticheckpoint activity of telomere seeds are suppressed in yeast models of ALT pathways.


Assuntos
Pontos de Checagem do Ciclo Celular , Cromossomos Fúngicos/metabolismo , Reparo do DNA , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Recombinação Genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Homeostase do Telômero , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA