Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Gene ; 710: 30-38, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31128222

RESUMO

Pelodera strongyloides is a generally free-living gonochoristic facultative nematode. The whole genomic sequence of P. strongyloides remains unknown but 4 small subunit ribosomal RNA (ssrRNA) gene sequences are available. This project launched a de novo transcriptome assembly with 100 bp paired-end RNA-seq reads from normal, starved and wet-plate cultured animals. Trinity assembly tool generated 104,634 transcript contigs with N50 contig being 2195 bp and average contig length at 1103 bp. Transcriptome BLASTX matching results of five nematodes (C. elegans, Strongyloides stercoralis, Necator americanus, Trichuris trichiura, and Pristionchus pacificus) were consistent with their evolutionary relationships. Sixteen genes were identified to be homologous to key elements of the C. elegans RNA interference system, such as Dicer, Argonaute, RNA-dependent RNA polymerase and double strand RNA transport proteins. In starved samples, we observed up-regulation of cuticle related genes and 3 dauer formation genes. Dauer morphology was captured with enlarged phasmid under light microscopy, and dauer and normal larvae counts in clumps had a Pearson's product-moment correlation of 0.805 with P-value = 0.0088. Our results demonstrate that P. strongyloides could be used for studying nematode-related human or pet parasitic diseases. The sequenced assembled transcriptome reported here may be useful to understand the evolution of parasitism in Nematoda.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Helminto/genética , Rhabditoidea/genética , Animais , Mapeamento de Sequências Contíguas , Evolução Molecular , Regulação da Expressão Gênica , Filogenia , Rhabditoidea/anatomia & histologia , Análise de Sequência de RNA/métodos
2.
Brief Bioinform ; 20(5): 1836-1852, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-29982332

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via recognition of cognate sequences and interference of transcriptional, translational or epigenetic processes. Bioinformatics tools developed for miRNA study include those for miRNA prediction and discovery, structure, analysis and target prediction. We manually curated 95 review papers and ∼1000 miRNA bioinformatics tools published since 2003. We classified and ranked them based on citation number or PageRank score, and then performed network analysis and text mining (TM) to study the miRNA tools development trends. Five key trends were observed: (1) miRNA identification and target prediction have been hot spots in the past decade; (2) manual curation and TM are the main methods for collecting miRNA knowledge from literature; (3) most early tools are well maintained and widely used; (4) classic machine learning methods retain their utility; however, novel ones have begun to emerge; (5) disease-associated miRNA tools are emerging. Our analysis yields significant insight into the past development and future directions of miRNA tools.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , Algoritmos , Aprendizado de Máquina , MicroRNAs/química , Conformação de Ácido Nucleico
4.
Evol Dev ; 19(4-5): 205-217, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28869352

RESUMO

Species with multiple different larval developmental modes are interesting models for the study of mechanisms underlying developmental mode transitions and life history evolution. Pygospio elegans, a small, tube-dwelling polychaete worm commonly found in estuarine and marine habitats around the northern hemisphere, is one species with variable developmental modes. To provide new genomic resources for studying P. elegans and to address the differences in gene expression between individuals producing offspring with different larval developmental modes, we performed whole transcriptome Illumina RNA sequencing of adult worms from two populations and prepared a de novo assembly of the P. elegans transcriptome. The transcriptome comprises 66,233 unigenes, of which 33,807 contain predicted coding sequences, 26,448 have at least one functional annotation, and 3,076 are classified as putative long non-coding RNAs. We found more than 8,000 unigenes significantly differentially expressed between adult worms from populations producing either planktonic or benthic larvae. This comprehensive transcriptome resource for P. elegans adds to the available genomic data for annelids and can be used to uncover mechanisms allowing developmental variation in this and potentially other marine invertebrate species.


Assuntos
Poliquetos/crescimento & desenvolvimento , Poliquetos/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Repetições de Microssatélites , Anotação de Sequência Molecular
5.
PLoS One ; 11(3): e0151863, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27008314

RESUMO

Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species.


Assuntos
Metilação de DNA , Epigênese Genética , Poliquetos/genética , Animais , Ilhas de CpG , Feminino
6.
Artigo em Inglês | MEDLINE | ID: mdl-26363379

RESUMO

miRNA clusters define a group of related miRNAs closely localized in the genome with an evolution that remains poorly understood. The miR-302/367 cluster represents a single polycistronic transcript that produces five precursor miRNAs. The cluster is highly expressed and essential for maintenance of human embryonic stem cells. We found the cluster to be highly conserved and present in most mammals. In primates, seed sequence and miRNA structure are conserved, but inter-precursor sequences are evolving. Insertions of new miRNAs, deletions of individual miRNAs, and a cluster duplication observed in different species suggest an actively evolving cluster. Core transcriptional machinery consisting of NANOG and OCT-4 transcription factors that define stem cells are present upstream of the miR-302/367 cluster. Interestingly, we found the miR-302/367 cluster flanking region to be enriched as a target site of other miRNAs suggesting a mechanism for feedback control. Analysis of miR-302 and miR-367 targets demonstrated concordance of gene set enrichment groups at high gene ontology levels. This cluster also expresses isomiRs providing another means of establishing sequence diversity. Finally, using three different kidney tumor datasets, we observed consistent expression of miR-302 family members in normal tissue while adjacent tumor tissue showed a significant lack of expression. Clustering expression levels of miR-302 validated target genes showed a significant correlation between miR-302/367 cluster miRNAs and a subset of validated gene targets in healthy and adjacent tumor tissues. Taken together, our data show a highly conserved and still evolving miRNA cluster that may have additional unrecognized functions.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/genética , Animais , Sequência de Bases , Biomarcadores Tumorais/genética , Evolução Molecular , Humanos , Dados de Sequência Molecular , Família Multigênica , Neoplasias/genética , Alinhamento de Sequência
7.
PLoS One ; 10(3): e0116668, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822230

RESUMO

Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs.


Assuntos
Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Biologia Computacional , Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/química , Anotação de Sequência Molecular , Dados de Sequência Molecular , Pequeno RNA não Traduzido/química , Alinhamento de Sequência
8.
Artigo em Inglês | MEDLINE | ID: mdl-24463456

RESUMO

The aryl hydrocarbon receptor (AHR) functions in higher organisms in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement. We investigated the effect of AHR mutation on the transcriptional profile of L4 stage C. elegans using RNA-seq and quantitative real time PCR in order to understand better AHR-1 function at the genomic level. Illumina HiSeq 2000 sequencing yielded 51.1, 61.2 and 54.0 million reads from wild-type controls, ahr-1(ia03) and ahr-1(ju145) mutants, respectively, providing detection of over 18,000 transcripts in each sample. Fourteen transcripts were over-expressed and 125 under-expressed in both ahr-1 mutants when compared to wild-type. Under-expressed genes included soluble guanylate cyclase (gcy) family genes, some of which were previously demonstrated to be regulated by AHR-1. A neuropeptide-like protein gene, nlp-20, and a F-box domain protein gene fbxa-192 and its pseudogenes fbxa-191 and fbxa-193 were also under-expressed. Conserved xenobiotic response elements were identified in the 5' flanking regions of some but not all of the gcy, nlp-20, and fbxa genes. These results extend previous studies demonstrating control of gcy family gene expression by AHR-1, and furthermore suggest a role of AHR-1 in regulation of a neuropeptide gene as well as pseudogenes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neuropeptídeos/genética , Pseudogenes , Receptores de Hidrocarboneto Arílico/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mutação
9.
Toxicol Lett ; 222(2): 189-96, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23872261

RESUMO

Methylmercury (MeHg) is a persistent environmental and dietary contaminant that causes serious adverse developmental and physiologic effects at multiple cellular levels. In order to understand more fully the consequences of MeHg exposure at the molecular level, we profiled gene and miRNA transcripts from the model organism Caenorhabditis elegans. Animals were exposed to MeHg (10 µM) from embryo to larval 4 (L4) stage and RNAs were isolated. RNA-seq analysis on the Illumina platform revealed 541 genes up- and 261 genes down-regulated at a cutoff of 2-fold change and false discovery rate-corrected significance q < 0.05. Among the up-regulated genes were those previously shown to increase under oxidative stress conditions including hsp-16.11 (2.5-fold), gst-35 (10.1-fold), and fmo-2 (58.5-fold). In addition, we observed up-regulation of 6 out of 7 lipocalin related (lpr) family genes and down regulation of 7 out of 15 activated in blocked unfolded protein response (abu) genes. Gene Ontology enrichment analysis highlighted the effect of genes related to development and organism growth. miRNA-seq analysis revealed 6-8 fold down regulation of mir-37-3p, mir-41-5p, mir-70-3p, and mir-75-3p. Our results demonstrate the effects of MeHg on specific transcripts encoding proteins in oxidative stress responses and in ER stress pathways. Pending confirmation of these transcript changes at protein levels, their association and dissociation characteristics with interaction partners, and integration of these signals, these findings indicate broad and dynamic mechanisms by which MeHg exerts its harmful effects.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Lipocalinas/metabolismo , Compostos de Metilmercúrio/toxicidade , MicroRNAs/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/metabolismo , Lipocalinas/biossíntese , Lipocalinas/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Família Multigênica/efeitos dos fármacos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , RNA de Helmintos/antagonistas & inibidores , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Transcrição Gênica/efeitos dos fármacos
10.
Genetics ; 193(4): 1279-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410827

RESUMO

Nematodes compose an abundant and diverse invertebrate phylum with members inhabiting nearly every ecological niche. Panagrellus redivivus (the "microworm") is a free-living nematode frequently used to understand the evolution of developmental and behavioral processes given its phylogenetic distance to Caenorhabditis elegans. Here we report the de novo sequencing of the genome, transcriptome, and small RNAs of P. redivivus. Using a combination of automated gene finders and RNA-seq data, we predict 24,249 genes and 32,676 transcripts. Small RNA analysis revealed 248 microRNA (miRNA) hairpins, of which 63 had orthologs in other species. Fourteen miRNA clusters containing 42 miRNA precursors were found. The RNA interference, dauer development, and programmed cell death pathways are largely conserved. Analysis of protein family domain abundance revealed that P. redivivus has experienced a striking expansion of BTB domain-containing proteins and an unprecedented expansion of the cullin scaffold family of proteins involved in multi-subunit ubiquitin ligases, suggesting proteolytic plasticity and/or tighter regulation of protein turnover. The eukaryotic release factor protein family has also been dramatically expanded and suggests an ongoing evolutionary arms race with viruses and transposons. The P. redivivus genome provides a resource to advance our understanding of nematode evolution and biology and to further elucidate the genomic architecture leading to free-living lineages, taking advantage of the many fascinating features of this worm revealed by comparative studies.


Assuntos
Meio Ambiente , Evolução Molecular , Genoma Helmíntico , Rabditídios/genética , Transcriptoma , Animais , Morte Celular/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , MicroRNAs/análise , Filogenia , Interferência de RNA , Precursores de RNA , Análise de Sequência de DNA , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
J Biochem Mol Toxicol ; 27(3): 219-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23381935

RESUMO

Ethanol is a widely consumed and rapidly absorbed toxin. While the physiological effects of ethanol consumption are well known, the underlying biochemical and molecular changes at the gene expression level in whole animals remain obscure. We exposed the model organism Caenorhabditis elegans to 0.2 M ethanol from the embryo to L4 larva stage and assayed gene expression changes in whole animals using RNA-Seq and quantitative real-time PCR. We observed gene expression changes in 1122 genes (411 up, 711 down). Cytochrome P-450 (CYP) gene family members (12 of 78) were upregulated, whereas activated in blocked unfolded protein response (ABU) (7 of 15) were downregulated. Other detoxification gene family members were also regulated including four glutathione-S-transferases and three flavin monooxygenases. The results presented show specific gene expression changes following chronic ethanol exposure in C. elegans that indicate both persistent upregulation of detoxification response genes and downregulation of endoplasmic reticulum stress pathway genes.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Etanol/farmacologia , Animais , Caenorhabditis elegans/genética , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Bioinformatics ; 27(9): 1247-54, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21422073

RESUMO

MOTIVATION: MicroRNAs (miRNAs) are small non-coding RNAs that regulate transcriptional processes via binding to the target gene mRNA. In animals, this binding is imperfect, which makes the computational prediction of animal miRNA targets a challenging task. The accuracy of miRNA target prediction can be improved with the use of machine learning methods. Previous work has described methods using supervised learning, but they suffer from the lack of adequate training examples, a common problem in miRNA target identification, which often leads to deficient generalization ability. RESULTS: In this work, we introduce mirSOM, a miRNA target prediction tool based on clustering of short 3(')-untranslated region (3(')-UTR) substrings with self-organizing map (SOM). As our method uses unsupervised learning and a large set of verified Caenorhabditis elegans 3(')-UTRs, we did not need to resort to training using a known set of targets. Our method outperforms seven other methods in predicting the experimentally verified C.elegans true and false miRNA targets. AVAILABILITY: mirSOM miRNA target predictions are available at http://kokki.uku.fi/bioinformatics/mirsom.


Assuntos
Inteligência Artificial , Caenorhabditis elegans/genética , Biologia Computacional/métodos , MicroRNAs/genética , Algoritmos , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Análise por Conglomerados , MicroRNAs/metabolismo , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Software
13.
J Mol Neurosci ; 41(1): 210-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20091141

RESUMO

MicroRNAs (miRNAs) play an important role in human brain development and maintenance. To search for miRNAs that may be involved in the pathogenesis of Parkinsons disease (PD), we utilized miRNA microarrays to identify potential gene expression changes in 115 annotated miRNAs in PD-associated Caenorhabditis elegans models that either overexpress human A53T alpha-synuclein or have mutations within the vesicular catecholamine transporter (cat-1) or parkin (pdr-1) ortholog. Here, we show that 12 specific miRNAs are differentially regulated in the animals overexpressing alpha-synuclein, five in cat-1, and three in the pdr-1 mutants. The family of miR-64 and miR-65 are co-underexpressed in the alpha-synuclein transgenic and cat-1 strains, and members of let-7 family co-underexpressed in the alpha-synuclein and pdr-1 strains; mdl-1 and ptc-1 genes are target candidates for miR-64 and miR-65 and are overexpressed in alpha-synuclein transgenic as well as miR-64/65 (tm3711) knockout animals. These results indicate that miRNAs are differentially expressed in C. elegans PD models and suggest a role for these molecules in disease pathogenesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Modelos Animais de Doenças , MicroRNAs , Doença de Parkinson/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia
14.
BMC Mol Biol ; 9: 105, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19036124

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as post-transcriptional regulators of gene expression. Studies concerning transcriptional regulation of miRNAs have so far concentrated on those located within the intergenic region of the genome and the search for putative promoters, thus leaving open the question of the existence of possible regulatory elements common to all miRNAs including those located in introns of protein coding genes. RESULTS: In this study, we initially searched for motifs occurring in the area 1000 bp upstream from all miRNAs independent of their genomic location. We discovered a previously unknown sequence motif GANNNNGA that displayed a conserved distribution in the nematode worms Caenorhabditis elegans and Caenorhabditis briggsae. This motif had a peak occurrence at 500 bp upstream, with a sharp drop-off toward the miRNA start site. Further analysis indicated that this motif was locally restricted and not enriched 1000-5000 bp upstream or 0-2000 bp downstream of the miRNA start site. In addition, this motif was observed to be most abundant in the upstream sequences of two important miRNAs, mir-1 and mir-124. This abundance was also conserved in phylogenetically distant species including human and mouse. CONCLUSION: The results show that the motif GANNNNGA is conserved close to miRNA precursor start sites, suggesting that it may be involved in miRNA sequence recognition or regulation. This data provides important knowledge for the identification and computational prediction of miRNA sequences.


Assuntos
Região 5'-Flanqueadora/genética , Sequência de Bases/genética , Caenorhabditis elegans , Caenorhabditis , Sequência Conservada , MicroRNAs/genética , Filogenia , Animais , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Análise de Sequência com Séries de Oligonucleotídeos
15.
BMC Genomics ; 9: 270, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18522735

RESUMO

BACKGROUND: Small interfering RNA (siRNA) molecules mediate sequence specific silencing in RNA interference (RNAi), a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA) molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. RESULTS: Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24-26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. CONCLUSION: These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.


Assuntos
Caenorhabditis elegans/genética , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Sequência Conservada , Biblioteca Gênica , Genoma Helmíntico/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA