Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(16): 166001, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701475

RESUMO

A key challenge in materials discovery is to find high-temperature superconductors. Hydrogen and hydride materials have long been considered promising materials displaying conventional phonon-mediated superconductivity. However, the high pressures required to stabilize these materials have restricted their application. Here, we present results from high-throughput computation, considering a wide range of high-symmetry ternary hydrides from across the periodic table at ambient pressure. This large composition space is then reduced by considering thermodynamic, dynamic, and magnetic stability before direct estimations of the superconducting critical temperature. This approach has revealed a metastable ambient-pressure hydride superconductor, Mg_{2}IrH_{6}, with a predicted critical temperature of 160 K, comparable to the highest temperature superconducting cuprates. We propose a synthesis route via a structurally related insulator, Mg_{2}IrH_{7}, which is thermodynamically stable above 15 GPa, and discuss the potential challenges in doing so.

2.
Nat Commun ; 15(1): 441, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199988

RESUMO

In this work, we resolve conflicting experimental and theoretical findings related to the dynamical stability and superconducting properties of [Formula: see text]-LuH3, which was recently suggested as the parent phase harboring room-temperature superconductivity at near-ambient pressures. Including temperature and quantum anharmonic lattice effects in our calculations, we demonstrate that the theoretically predicted structural instability of the [Formula: see text] phase near ambient pressures is suppressed for temperatures above 200 K. We provide a p-T phase diagram for stability up to pressures of 6 GPa, where the required temperature for stability is reduced to T > 80 K. We also determine the superconducting critical temperature Tc of [Formula: see text]-LuH3 within the Migdal-Eliashberg formalism, using temperature- and quantum-anharmonically-corrected phonon dispersions, finding that the expected Tc for electron-phonon mediated superconductivity is in the range of 50-60 K, i.e., well below the temperatures required to stabilize the lattice. When considering moderate doping based on rigidly shifting the Fermi level, Tc decreases for both hole and electron doping. Our results thus provide evidence that any observed room-temperature superconductivity in pure or doped [Formula: see text]-LuH3, if confirmed, cannot be explained by a conventional electron-phonon mediated pairing mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA