RESUMO
Invasive aspergillosis causes significant morbidity and mortality in immunocompromised patients. Natural killer (NK) cells are pivotal for antifungal defense. Thus far, CD56 is the only known pathogen recognition receptor on NK cells triggering potent antifungal activity against Aspergillus fumigatus. However, the underlying cellular mechanisms and the fungal ligand of CD56 have remained unknown. Using purified cell wall components, biochemical treatments, and ger mutants with altered cell wall composition, we herein found that CD56 interacts with the A. fumigatus cell wall carbohydrate galactosaminogalactan (GAG). This interaction induced NK-cell activation, degranulation, and secretion of immune-enhancing chemokines and cytotoxic effectors. Supernatants from GAG-stimulated NK cells elicited antifungal activity and enhanced antifungal effector responses of polymorphonuclear cells. In conclusion, we identified A. fumigatus GAG as a ligand of CD56 on human primary NK cells, stimulating potent antifungal effector responses and activating other immune cells.
Assuntos
Aspergilose , Aspergillus fumigatus , Antígeno CD56 , Células Matadoras Naturais , Humanos , Aspergillus fumigatus/imunologia , Células Matadoras Naturais/imunologia , Antígeno CD56/metabolismo , Antígeno CD56/imunologia , Aspergilose/imunologia , Aspergilose/microbiologia , Ativação Linfocitária/imunologia , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Parede Celular/imunologia , Parede Celular/metabolismoRESUMO
Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.
Assuntos
Aspergillus fumigatus , Candida albicans , Fosfopiruvato Hidratase , Animais , Humanos , Camundongos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Candida albicans/enzimologia , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Monócitos/metabolismo , Monócitos/microbiologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfopiruvato Hidratase/metabolismo , Linfócitos B/metabolismo , Linfócitos B/microbiologiaRESUMO
Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution.