Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(24): e2122808119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666864

RESUMO

Deploying toxins in complex mixtures is thought to be advantageous and is observed during antagonistic interactions in nature. Toxin mixtures are widely utilized in medicine and pest control, as they are thought to slow the evolution of detoxification counterresponses in the targeted organisms. Here we show that caterpillars rearrange key constituents of two distinct plant defense pathways to postingestively disable the defensive properties of both pathways. Specifically, phenolic esters of quinic acid, chlorogenic acids (CAs), potent herbivore and ultraviolet (UV) defenses, are reesterified to decorate particular sugars of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) and prevent their respective anti­herbivore defense functions. This was discovered through the employment of comparative metabolomics of the leaves of Nicotiana attenuata and the frass of this native tobacco's specialist herbivore, Manduca sexta larvae. Feeding caterpillars on leaves of transgenic plants abrogated in each of the two pathways, separately and together, revealed that one of the fully characterized frass conjugates, caffeoylated HGL-DTG, originated from ingested CA and HGL-DTGs and that both had negative effects on the defensive function of the other compound class, as revealed by rates of larval mass gain. This negative defensive synergy was further explored in 183 N. attenuata natural accessions, which revealed a strong negative covariance between the two defense pathways. Further mapping analyses in a biparental recombinant inbred line (RIL) population imputed quantitative trait loci (QTLs) for the two pathways at distinct genomic locations. The postingestive repurposing of defense metabolism constituents reveals a downside of deploying toxins in mixtures, a downside which plants in nature have evolved to counter.


Assuntos
Manduca , Animais , Herbivoria , Insetos/metabolismo , Larva/metabolismo , Manduca/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
2.
Metabolites ; 11(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34564454

RESUMO

In clinical diagnostics and research, blood samples are one of the most frequently used materials. Nevertheless, exploring the chemical composition of human plasma and serum is challenging due to the highly dynamic influence of pre-analytical variation. A prominent example is the variability in pre-centrifugation delay (time-to-centrifugation; TTC). Quality indicators (QI) reflecting sample TTC are of utmost importance in assessing sample history and resulting sample quality, which is essential for accurate diagnostics and conclusive, reproducible research. In the present study, we subjected human blood to varying TTCs at room temperature prior to processing for plasma or serum preparation. Potential sample QIs were identified by Ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) based metabolite profiling in samples from healthy volunteers (n = 10). Selected QIs were validated by a targeted MS/MS approach in two independent sets of samples from patients (n = 40 and n = 70). In serum, the hypoxanthine/guanosine (HG) and hypoxanthine/inosine (HI) ratios demonstrated high diagnostic performance (Sensitivity/Specificity > 80%) for the discrimination of samples with a TTC > 1 h. We identified several eicosanoids, such as 12-HETE, 15-(S)-HETE, 8-(S)-HETE, 12-oxo-HETE, (±)13-HODE and 12-(S)-HEPE as QIs for a pre-centrifugation delay > 2 h. 12-HETE, 12-oxo-HETE, 8-(S)-HETE, and 12-(S)-HEPE, and the HI- and HG-ratios could be validated in patient samples.

3.
Plant Cell ; 33(5): 1748-1770, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33561278

RESUMO

The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.


Assuntos
Monoterpenos Acíclicos/metabolismo , Diterpenos/metabolismo , Glicosídeos/metabolismo , Nicotiana/metabolismo , Monoterpenos Acíclicos/química , Animais , Vias Biossintéticas , Inativação Gênica , Glicosilação , Glicosiltransferases/metabolismo , Herbivoria , Larva/fisiologia , Manduca/fisiologia , Metabolômica , Necrose , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo
4.
Science ; 371(6526): 255-260, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33446550

RESUMO

Many plant specialized metabolites function in herbivore defense, and abrogating particular steps in their biosynthetic pathways frequently causes autotoxicity. However, the molecular mechanisms underlying their defense and autotoxicity remain unclear. Here, we show that silencing two cytochrome P450s involved in diterpene biosynthesis in the wild tobacco Nicotiana attenuata causes severe autotoxicity symptoms that result from the inhibition of sphingolipid biosynthesis by noncontrolled hydroxylated diterpene derivatives. Moreover, the diterpenes' defensive function is achieved by inhibiting herbivore sphingolipid biosynthesis through postingestive backbone hydroxylation products. Thus, by regulating metabolic modifications, tobacco plants avoid autotoxicity and gain herbivore defense. The postdigestive duet that occurs between plants and their insect herbivores can reflect the plant's solutions to the "toxic waste dump" problem of using potent chemical defenses.


Assuntos
Diterpenos/metabolismo , Glucosídeos/biossíntese , Herbivoria , Manduca/fisiologia , Nicotiana/metabolismo , Esfingolipídeos/biossíntese , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Manduca/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Nicotiana/enzimologia
5.
Elife ; 72018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30152755

RESUMO

High-through-put (HTP) screening for functional arbuscular mycorrhizal fungi (AMF)-associations is challenging because roots must be excavated and colonization evaluated by transcript analysis or microscopy. Here we show that specific leaf-metabolites provide broadly applicable accurate proxies of these associations, suitable for HTP-screens. With a combination of untargeted and targeted metabolomics, we show that shoot accumulations of hydroxy- and carboxyblumenol C-glucosides mirror root AMF-colonization in Nicotiana attenuata plants. Genetic/pharmacologic manipulations indicate that these AMF-indicative foliar blumenols are synthesized and transported from roots to shoots. These blumenol-derived foliar markers, found in many di- and monocotyledonous crop and model plants (Solanum lycopersicum, Solanum tuberosum, Hordeum vulgare, Triticum aestivum, Medicago truncatula and Brachypodium distachyon), are not restricted to particular plant-AMF interactions, and are shown to be applicable for field-based QTL mapping of AMF-related genes.


Assuntos
Cicloexanonas/metabolismo , Micorrizas/metabolismo , Brotos de Planta/metabolismo , Simbiose , Biomarcadores/metabolismo , Cicloexanonas/química , Genes de Plantas , Ensaios de Triagem em Larga Escala , Metabolômica , Micorrizas/crescimento & desenvolvimento , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico , Fatores de Tempo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
6.
Proc Natl Acad Sci U S A ; 113(47): E7610-E7618, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821729

RESUMO

Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.


Assuntos
Teoria da Informação , Metabolômica/métodos , Nicotiana/metabolismo , Redes Reguladoras de Genes , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Metanol/análise , Especificidade de Órgãos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem , Nicotiana/genética
7.
Plant J ; 85(4): 561-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26749139

RESUMO

Exploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry-based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross-species comparisons. 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata. The multiple labile glycosidic bonds of HGL-DTGs result in extensive in-source fragmentation (IS-CID) during ionization. To reconstruct these IS-CID clusters from profiling data and identify precursor ions, we applied a deconvolution algorithm and created an MS/MS library from positive-ion spectra of purified HGL-DTGs. From this library, 251 non-redundant fragments were annotated, and a workflow to characterize leaf, flower and fruit extracts of 35 solanaceous species was established. These analyses predicted 105 novel HGL-DTGs that were restricted to Nicotiana, Capsicum and Lycium species. Interestingly, malonylation is a highly conserved step in HGL-DTG metabolism, but is differentially affected by jasmonate signaling among Nicotiana species. This MS-based workflow is readily applicable for cross-species re-identification/annotation of other compound classes with sufficient fragmentation knowledge, and therefore has the potential to support hypotheses regarding secondary metabolism diversification.


Assuntos
Diterpenos/química , Glicosídeos/química , Metabolômica/métodos , Solanaceae/química , Espectrometria de Massas em Tandem/métodos , Capsicum/química , Capsicum/metabolismo , Ciclopentanos/metabolismo , Diterpenos/classificação , Diterpenos/isolamento & purificação , Glicosídeos/classificação , Glicosídeos/isolamento & purificação , Lycium/química , Lycium/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Transdução de Sinais , Solanaceae/metabolismo , Especificidade da Espécie , Nicotiana/química , Nicotiana/metabolismo
8.
Phytochemistry ; 115: 89-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25682510

RESUMO

The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid ß-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.


Assuntos
Látex/química , Taraxacum , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Lactonas/análise , Látex/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Raízes de Plantas/química , Sesquiterpenos/análise , Taraxacum/química , Taraxacum/genética , Taraxacum/crescimento & desenvolvimento , Taraxacum/metabolismo , Terpenos/análise
9.
Iran J Pharm Res ; 14(1): 243-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25561930

RESUMO

Euphorbia macrostegia or Persian wood spurge is one of the seventeen endemic plants of this genus in Iran. Three triterpenoids, 24-methylenecycloartan-3ß-ol (1), butyrospermol (2) and cycloartenol (3) and three diglycerides, 1,2-di-O-α-linolenoyl-sn-glycerol (4), 1-O-linoleoyl-3-O-palmitoyl-sn-glycerol (5) and 1-O-α-linolenoyl-2-O-palmitoyl-sn-glycerol (6) were isolated from the hexane soluble part of methanol-dichloromethane extracts of the aerial parts of Euphorbia macrostegia Boiss. The structures of all compounds were elucidated using different spectroscopy methods including, (1)H NMR, (13)C NMR, HSQC, HMBC, EI-MS and IR. The triterpenes and the unsaturated fatty acids moieties of the diglycerides isolated from the plant were reported previously to have analgesic, anticancer, bactericidal and antifungal activity. Here, we show that E. macrostegia is a new source for the above mentioned biologically active compounds.

10.
J Agric Food Chem ; 58(17): 9418-27, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20701244

RESUMO

A liquid chromatography-electrospray ionization-time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) procedure was developed to characterize changes induced in Nicotiana attenuata leaves 1 h and 5 days after wounding and application of Manduca sexta elicitors. The constancy of the measurement conditions was first confirmed for 22 selected analytes spanning the entire chromatogram. Using the Profile Analysis software, we extracted 367 buckets, which were analyzed by principal component analysis and two-factorial ANOVA. One hundred seventy-three buckets were found to be statistically regulated, 128 due to time effects, and 85 due to treatment effects. In vivo 15N-isotope labeling was used to facilitate the annotation and the interpretation of the fragmentation pattern of nitrogen-containing metabolites, and a correlation analysis was performed to test mathematical relationships existing among potential in-source fragments. Additionally, tandem MS measurements of the most regulated ions are presented. Altogether, this study defines a framework for the mining and annotation of major herbivory-elicited changes in Nicotiana attenuata.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Manduca , Nicotiana/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Variância , Animais
11.
Plant Cell ; 22(1): 273-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20081114

RESUMO

We identified 11 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) that occur in concentrations equivalent to starch (mg/g fresh mass) in aboveground tissues of coyote tobacco (Nicotiana attenuata) and differ in their sugar moieties and malonyl sugar esters (0-2). Concentrations of HGL-DTGs, particularly malonylated compounds, are highest in young and reproductive tissues. Within a tissue, herbivore elicitation changes concentrations and biosynthetic kinetics of individual compounds. Using stably transformed N. attenuata plants silenced in jasmonate production and perception, or production of N. attenuata Hyp-rich glycopeptide systemin precursor by RNA interference, we identified malonylation as the key biosynthetic step regulated by herbivory and jasmonate signaling. We stably silenced N. attenuata geranylgeranyl diphosphate synthase (ggpps) to reduce precursors for the HGL-DTG skeleton, resulting in reduced total HGL-DTGs and greater vulnerability to native herbivores in the field. Larvae of the specialist tobacco hornworm (Manduca sexta) grew up to 10 times as large on ggpps silenced plants, and silenced plants suffered significantly more damage from herbivores in N. attenuata's native habitat than did wild-type plants. We propose that high concentrations of HGL-DTGs effectively defend valuable tissues against herbivores and that malonylation may play an important role in regulating the distribution and storage of HGL-DTGs in plants.


Assuntos
Ciclopentanos/metabolismo , Diterpenos/metabolismo , Glicosídeos/biossíntese , Nicotiana/metabolismo , Oxilipinas/metabolismo , Peptídeos/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Manduca/fisiologia , Estrutura Molecular , Peptídeos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA