RESUMO
The number of human infections with multidrug-resistant (MDR) bacteria is increasing worldwide and constitutes a serious threat to human health. Given the lack of novel antibiotic compounds worsening this dilemma, alternative antibiotic-independent treatment and prevention strategies of infectious diseases applying natural compounds appear highly appreciable. Given the long-known health-beneficial and disease-alleviating properties of Cannabis, we performed a literature search summarizing current knowledge regarding the antibacterial effects of extracts from different parts of the Cannabis sativa plant and of defined Cannabis-derived molecules and their potential mode of action. The included studies revealed that various extracts and essential oils of C. sativa as well as major cannabinoids exerted potent activities against a broad spectrum of Gram-positive bacteria and against some Gram-negative bacterial species including MDR strains. Particularly the disruption of the bacterial cytoplasmic membrane by some cannabinoids resulted in potent antibacterial effects against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus. Furthermore, defined cannabinoids inhibited the formation of and eradicated existing bacterial biofilms. In conclusion, given their antibacterial properties distinct Cannabis-derived molecules expand the repertoire of antibiotics-independent treatment options in the combat of bacterial infectious diseases which should be further addressed in future studies including clinical trials.
RESUMO
BACKGROUND: 3D cell culture models have recently garnered increasing attention for replicating organ microarchitecture and eliciting in vivo-like responses, holding significant promise across various biological disciplines. Broadly, 3D cell culture encompasses organoids as well as single- and multicellular spheroids. While the latter have found successful applications in tumor research, there is a notable scarcity of standardized intestinal models for infection biology that mimic the microarchitecture of the intestine. Hence, this study aimed to develop structured multicellular intestinal spheroids (SMIS) specifically tailored for studying molecular basis of infection by intestinal pathogens. RESULTS: We have successfully engineered human SMIS comprising four relevant cell types, featuring a fibroblast core enveloped by an outer monolayer of enterocytes and goblet cells along with monocytic cells. These SMIS effectively emulate the in vivo architecture of the intestinal mucosal surface and manifest differentiated morphological characteristics, including the presence of microvilli, within a mere two days of culture. Through analysis of various differentiation factors, we have illustrated that these spheroids attain heightened levels of differentiation compared to 2D monolayers. Moreover, SMIS serve as an optimized intestinal infection model, surpassing the capabilities of traditional 2D cultures, and exhibit a regulatory pattern of immunological markers similar to in vivo infections after Campylobacter jejuni infection. Notably, our protocol extends beyond human spheroids, demonstrating adaptability to other species such as mice and pigs. CONCLUSION: Based on the rapid attainment of enhanced differentiation states, coupled with the emergence of functional brush border features, increased cellular complexity, and replication of the intestinal mucosal microarchitecture, which allows for exposure studies via the medium, we are confident that our innovative SMIS model surpasses conventional cell culture methods as a superior model. Moreover, it offers advantages over stem cell-derived organoids due to scalability and standardization capabilities of the protocol. By showcasing differentiated morphological attributes, our model provides an optimal platform for diverse applications. Furthermore, the investigated differences of several immunological factors compared to monotypic monolayers after Campylobacter jejuni infection underline the refinement of our spheroid model, which closely mimics important features of in vivo infections.
RESUMO
Introduction: Human infections with the food-borne enteropathogen Campylobacter jejuni are responsible for increasing incidences of acute campylobacteriosis cases worldwide. Since antibiotic treatment is usually not indicated and the severity of the enteritis directly correlates with the risk of developing serious autoimmune disease later-on, novel antibiotics-independent intervention strategies with non-toxic compounds to ameliorate and even prevent campylobacteriosis are utmost wanted. Given its known pleiotropic health-promoting properties, curcumin constitutes such a promising candidate molecule. In our actual preclinical placebo-controlled intervention trial, we tested the anti-microbial and anti-inflammatory effects of oral curcumin pretreatment during acute experimental campylobacteriosis. Methods: Therefore, secondary abiotic IL-10-/- mice were challenged with synthetic curcumin via the drinking water starting a week prior oral C. jejuni infection. To assess anti-pathogenic, clinical, immune-modulatory, and functional effects of curcumin prophylaxis, gastrointestinal C. jejuni bacteria were cultured, clinical signs and colonic histopathological changes quantitated, pro-inflammatory immune cell responses determined by in situ immunohistochemistry and intestinal, extra-intestinal and systemic pro-inflammatory mediator measurements, and finally, intestinal epithelial barrier function tested by electrophysiological resistance analysis of colonic ex vivo biopsies in the Ussing chamber. Results and discussion: Whereas placebo counterparts were suffering from severe enterocolitis characterized by wasting symptoms and bloody diarrhea on day 6 post-infection, curcumin pretreated mice, however, were clinically far less compromised and displayed less severe microscopic inflammatory sequelae such as histopathological changes and epithelial cell apoptosis in the colon. In addition, curcumin pretreatment could mitigate pro-inflammatory innate and adaptive immune responses in the intestinal tract and importantly, rescue colonic epithelial barrier integrity upon C. jejuni infection. Remarkably, the disease-mitigating effects of exogenous curcumin was also observed in organs beyond the infected intestines and strikingly, even systemically given basal hepatic, renal, and serum concentrations of pro-inflammatory mediators measured in curcumin pretreated mice on day 6 post-infection. In conclusion, the anti-Campylobacter and disease-mitigating including anti-inflammatory effects upon oral curcumin application observed here highlight the polyphenolic compound as a promising antibiotics-independent option for the prevention from severe acute campylobacteriosis and its potential post-infectious complications.
Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Curcumina , Animais , Curcumina/administração & dosagem , Curcumina/farmacologia , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/imunologia , Camundongos , Campylobacter jejuni/efeitos dos fármacos , Administração Oral , Camundongos Knockout , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Doença Aguda , Antibacterianos/administração & dosagemRESUMO
Serious risks to human health are posed by acute campylobacteriosis, an enteritis syndrome caused by oral infection with the food-borne bacterial enteropathogen Campylobacter jejuni. Since the risk for developing post-infectious autoimmune complications is intertwined with the severity of enteritis, the search of disease-mitigating compounds is highly demanded. Given that benzoic acid is an organic acid with well-studied health-promoting including anti-inflammatory effects we tested in our present study whether the compound might be a therapeutic option to alleviate acute murine campylobacteriosis. Therefore, microbiota-depleted IL-10-/- mice were perorally infected with C. jejuni and received benzoic acid through the drinking water from day 2 until day 6 post-infection. The results revealed that benzoic acid treatment did not affect C. jejuni colonization in the gastrointestinal tract, but alleviated clinical signs of acute campylobacteriosis, particularly diarrheal and wasting symptoms. In addition, benzoic acid mitigated apoptotic cell responses in the colonic epithelia and led to reduced pro-inflammatory immune reactions in intestinal, extra-intestinal, and systemic compartments tested on day 6 post-infection. Hence, our preclinical placebo-controlled intervention trial revealed that benzoic acid constitutes a promising therapeutic option for treating acute campylobacteriosis in an antibiotic-independent fashion and in consequence, also for reducing the risk of post-infectious autoimmune diseases.
RESUMO
IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.
Assuntos
Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina 22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animais , Interleucina-33/imunologia , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Interleucinas/genética , Camundongos , Streptococcus pneumoniae/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Humanos , Camundongos Knockout , Microbiota/imunologia , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Microbioma Gastrointestinal/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Incidence rates of human Campylobacter jejuni infections are progressively increasing globally. Since the risk for the development of post-infectious autoimmune diseases correlates with the severity of the preceding enteritis and campylobacteriosis treatment usually involves symptomatic measures, it is desirable to apply antibiotic-independent compounds to treat or even prevent disease. Given its health-promoting including anti-inflammatory properties carvacrol constitutes a promising candidate. This prompted us to test the disease-alleviating including immune-modulatory effects of carvacrol prophylaxis in acute murine campylobacteriosis. Therefore, human gut microbiota-associated IL-10-/- mice were orally challenged with synthetic carvacrol starting a week before C. jejuni infection and followed up until day 6 post-infection. Whereas carvacrol prophylaxis did neither affect gastrointestinal pathogen loads, nor the human commensal gut microbiota composition, it improved the clinical outcome of mice, attenuated colonic epithelial cell apoptosis, and dampened pro-inflammatory immune responses not only in the intestinal tract but also in extra-intestinal organs including the liver and the spleen. In conclusion, our preclinical placebo-controlled intervention study provides convincing evidence that oral carvacrol pretreatment constitutes a promising option to mitigate acute campylobacteriosis and in turn, to reduce the risk for post-infectious complications.
RESUMO
In recent years, the incidence of food-borne bacterial enteric diseases has increased worldwide causing significant health care and socioeconomic burdens. According to the World Health Organization, there are an estimated 600 million cases of foodborne illnesses worldwide each year, resulting in 420,000 deaths. Despite intensive efforts to tackle this problem, foodborne pathogenic microorganisms continue to be spread further. Therefore, there is an urgent need to find novel anti-microbial non-toxic compounds for food preservation. One way to tackle this issue may be the usage of polyphenols, which have received increasing attention in the recent years given their pleotropic health-promoting properties. This prompted us to perform a literature search summarizing studies from the past 10 years regarding the potential anti-microbial and disease-alleviating effects of plant-derived phenolic compounds against foodborne bacterial pathogens. The included 16 studies provide evidence that polyphenols show pronounced anti-bacterial and anti-oxidant effects against both Gram-positive and Gram-negative bacterial species. In addition, synergistic anti-microbial effects in combination with synthetic antibiotics were observed. In conclusion, phenolic compounds may be useful as natural anti-microbial agents in the food, agricultural, and pharmaceutical industries in the combat of foodborne infections.
RESUMO
Prosthetic joint infections (PJIs) are dreaded arthroplasty complications often caused by Staphylococcus aureus. Due to methicillin-resistant S. aureus (MRSA) strains or biofilm formation, successful treatment remains difficult. Currently, two-stage revision surgery constitutes the gold standard therapy of PJIs, sometimes replaced or supplemented by debridement, antibiotics, and implant retention (DAIR). Given the dire consequences of therapeutic failure, bacteriophage therapy might be another treatment option. Here we provide a comprehensive literature review addressing the efficacy of phages applied against S. aureus as causative agent of PJIs. The included 17 publications had in common that the applied phages proved to be effective against various S. aureus isolates including MRSA even in biofilms. Experiments with mice, rats, rabbits, and moth larvae confirmed favorable features of phage preparations in PJI treatment in vivo; including its synergistic with antibiotics. Case reports of PJI patients unanimously described the bacterial eradication following, alongside other measures, intravenous and intra-articular phage administration. Generally, no major side effects occurred, but in some cases elevated liver transaminases were observed. To conclude, our review compiled promising evidence suggesting the safety and suitability of phage therapy as an adjuvant to DAIR in S. aureus PJIs, and thus, underscores the significance of further research.
RESUMO
Human Campylobacter jejuni infections are of worldwide importance and represent the most commonly reported bacterial enteritis cases in middle- and high-income countries. Since antibiotics are usually not indicated and the severity of campylobacteriosis is directly linked to the risk of developing post-infectious complications, non-toxic antibiotic-independent treatment approaches are highly desirable. Given its health-promoting properties, including anti-microbial and anti-inflammatory activities, we tested the disease-alleviating effects of oral menthol in murine campylobacteriosis. Therefore, human gut microbiota-associated IL-10-/- mice were orally subjected to synthetic menthol starting a week before C. jejuni infection and followed up until day 6 post-infection. Whereas menthol pretreatment did not improve campylobacteriosis symptoms, it resulted in reduced colonic C. jejuni numbers and alleviated both macroscopic and microscopic aspects of C. jejuni infection in pretreated mice vs. controls. Menthol pretreatment dampened the recruitment of macrophages, monocytes, and T lymphocytes to colonic sites of infection, which was accompanied by mitigated intestinal nitric oxide secretion. Furthermore, menthol pretreatment had only marginal effects on the human fecal gut microbiota composition during the C. jejuni infection. In conclusion, the results of this preclinical placebo-controlled intervention study provide evidence that menthol application constitutes a promising way to tackle acute campylobacteriosis, thereby reducing the risk for post-infectious complications.
Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Enterocolite , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Interleucina-10/genética , Mentol/farmacologia , Mentol/uso terapêutico , Infecções por Campylobacter/complicações , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/microbiologia , Camundongos Endogâmicos C57BL , Enterocolite/tratamento farmacológico , Enterocolite/microbiologiaRESUMO
Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.
Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monócitos , Anti-Infecciosos/farmacologia , Klebsiella pneumoniae , PulmãoRESUMO
Food-borne Campylobacter jejuni infections constitute serious threats to human health worldwide. Since antibiotic treatment is usually not indicated in infected immune-competent patients, antibiotic-independent treatment approaches are needed to tackle campylobacteriosis. To address this, we orally applied carvacrol, deferoxamine, deoxycholate, and 2-fucosyl-lactose either alone or all in combination to human microbiota-associated IL-10-/- mice from day 2 until day 6 following oral C. jejuni infection. Neither treatment regimen affected C. jejuni loads in the colon, whereas carvacrol lowered the pathogen numbers in the ileum on day 6 post-infection (p.i.). The carvacrol and combination treatment regimens resulted in alleviated diarrheal symptoms, less distinct histopathological and apoptotic epithelial cell responses in the colon, as well as diminished numbers of colonic neutrophils and T lymphocytes on day 6 p.i., whereas the latter cells were also decreased upon deferoxamine, deoxycholate, or 2-fucosyl-lactose application. Remarkably, the carvacrol, deferoxamine, and combination treatment regimens dampened ex-vivo IFN-γ secretion in the colon, the kidneys, and even in the serum to basal concentrations on day 6 p.i. In conclusion, carvacrol alone and its combination with deferoxamine, deoxycholate, and 2-fucosyl-lactose constitute promising antibiotics-independent treatment options to fight acute campylobacteriosis.
RESUMO
The incidence of human Campylobacter jejuni infections is increasing worldwide. It is highly desirable to prevent campylobacteriosis in individuals at risk for severe disease with antibiotics-independent non-toxic compounds. Activated charcoal (AC) has long been used as an anti-diarrheal remedy. Here, we tested the disease-mitigating effects of oral AC versus placebo in human gut microbiota-associated (hma) IL-10-/- mice starting a week prior to C. jejuni infection. On day 6 post-infection, the gastrointestinal C. jejuni loads were comparable in both infected cohorts, whereas campylobacteriosis symptoms such as wasting and bloody diarrhea were mitigated upon AC prophylaxis. Furthermore, AC application resulted in less pronounced C. jejuni-induced colonic epithelial cell apoptosis and in dampened innate and adaptive immune cell responses in the colon that were accompanied by basal concentrations of pro-inflammatory mediators including IL-6, TNF-α, IFN-γ, and nitric oxide measured in colonic explants from AC treated mice on day 6 post-infection. Furthermore, C. jejuni infection resulted in distinct fecal microbiota shift towards higher enterobacterial numbers and lower loads of obligate anaerobic species in hma mice that were AC-independent. In conclusion, our pre-clinical placebo-controlled intervention study provides evidence that prophylactic oral AC application mitigates acute murine campylobacteriosis.
Assuntos
Infecções por Campylobacter , Carvão Vegetal , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/tratamento farmacológico , Carvão Vegetal/administração & dosagem , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Administração Oral , Modelos Animais de DoençasRESUMO
Pulmonary infections of patients with cystic fibrosis (CF) or in intensive care units are frequently caused by the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Since these bacteria are commonly inherently multidrug-resistant (MDR) and hence, antibiotic treatment options are limited, bacteriophages may provide alternative therapeutic and prophylactic measures in the combat of pneumonia caused by P. aeruginosa. This prompted us to perform a comprehensive literature survey of current knowledge regarding effects of phages applied against pulmonary P. aeruginosa infections. The included 23 studies revealed that P. aeruginosa specific phages lyse and eliminate the bacteria even in case of biofilm production in vitro, whereas application to mice and men resulted in mitigated P. aeruginosa induced clinical signs and enhanced survival. Besides distinct host immune responses, no major adverse effects limiting therapeutic and/or prophylactic phage application were noted. However, the immune system and antibiotics generate synergies with phages due to the mutable sensitivity of P. aeruginosa. In conclusion, results summarized in this review provide evidence that phages constitute promising alternative treatment options for lung infections caused by MDR P. aeruginosa. Further studies are needed, however, to underscore the efficacy and safety aspects of phages application to infected patients including immune-compromised individuals.
RESUMO
Human infections with the food-borne zoonotic enteropathogen Campylobacter jejuni are increasing globally. Since multi-drug resistant bacterial strains are further on the rise, antibiotic-independent measures are needed to fight campylobacteriosis. Given its anti-microbial and anti-inflammatory properties the polyphenolic compound resveratrol constitutes such a promising candidate molecule. In our present placebo-controlled intervention trial, synthetic resveratrol was applied perorally to human gut microbiota-associated (hma) IL-10-/- mice starting a week before oral C. jejuni infection. Our analyses revealed that the resveratrol prophylaxis did not interfere with the establishment of C. jejuni within the murine gastrointestinal tract on day 6 post-infection, but alleviated clinical signs of campylobacteriosis and resulted in less distinct colonic epithelial apoptosis. Furthermore, oral resveratrol dampened C. jejuni-induced colonic T and B cell responses as well as intestinal secretion of pro-inflammatory mediators including nitric oxide, IL-6, TNF-α, and IFN-γ to basal levels. Moreover, resveratrol application was not accompanied by significant shifts in the colonic commensal microbiota composition during campylobacteriosis in hma IL-10-/- mice. In conclusion, our placebo-controlled intervention study provides evidence that prophylactic oral application of resveratrol constitutes a promising strategy to alleviate acute campylobacteriosis and in consequence, to reduce the risk for post-infectious autoimmune sequelae.
RESUMO
Background: Acute campylobacteriosis caused by oral infections with the enteropathogen Campylobacter jejuni represent serious threats to global human health. Since novel treatment options with safe and antibiotics-independent compounds would be highly appreciable, we here investigated the anti-bacterial and disease-alleviating effects of carvacrol, butyrate, ellagic acid, and 2'-fucosyl-lactose in acute murine campylobacteriosis. To address this, secondary abiotic IL-10-/- mice were perorally infected with C. jejuni and treated with either compound alone or all four in combination via the drinking water starting two days post-infection. Results: On day 6, the duodenal pathogen loads were lower in mice of the combination versus the vehicle treatment cohort. Importantly, mice treated with carvacrol and the combination presented with less distinct diarrheal symptoms, colonic histopathology, epithelial cell apoptosis, and immune cell responses when compared to vehicle counterparts on day 6 post-infection. Furthermore, the combination treatment did not only diminish colonic IFN-γ, TNF-α, and IL-6 secretion in C. jejuni infected mice, but also dampened extra-intestinal and even systemic pro-inflammatory cytokine concentrations to basal levels as measured in liver, kidneys, lungs, and serum samples. Conclusions: Our preclinical placebo-controlled intervention trial provides evidence that the combined oral application of carvacrol, butyrate, ellagic acid, and 2'-fucosyl-lactose alleviates acute campylobacteriosis in the vertebrate host.
RESUMO
BACKGROUND: Zoonotic microorganisms are increasingly impacting human health worldwide. Due to the development of the global population, humans and animals live in shared and progressively crowded ecosystems, which enhances the risk of zoonoses. Although Campylobacter species are among the most important bacterial zoonotic agents worldwide, the molecular mechanisms of many host and pathogen factors involved in colonisation and infection are poorly understood. Campylobacter jejuni colonises the crypts of the human colon and causes acute inflammatory processes. The mucus and associated proteins play a central host-protective role in this process. The aim of this study was to explore the regulation of specific glycosyltransferase genes relevant to differential mucin-type O-glycosylation that could influence host colonisation and infection by C. jejuni. RESULTS: Since microRNAs are known to be important regulators of the mammalian host cell response to bacterial infections, we focussed on the role of miR-125a-5p in C. jejuni infection. Combining in vitro and in vivo approaches, we show that miR-125a-5p regulates the expression of the sialyltransferase ST3GAL1 in an infection-dependent manner. The protein ST3GAL1 shows markedly increased intestinal levels in infected mice, with enhanced distribution in the mucosal epithelial layer in contrast to naïve mice. CONCLUSION: From our previous studies and the data presented here, we conclude that miR-125a-5p and the previously reported miR-615-3p are involved in regulating the glycosylation patterns of relevant host cell response proteins during C. jejuni infection. The miRNA-dependent modulation of mucin-type O-glycosylation could be part of the mucosal immune response, but also a pathogen-driven modification that allows colonisation and infection of the mammalian host.
RESUMO
Human food-borne infections with the enteropathogen Campylobacter jejuni are becoming increasingly prevalent worldwide. Since antibiotics are usually not indicated in campylobacteriosis, alternative treatment regimens are important. We here investigated potential disease-alleviating effects of menthol and of extracts from tormentil, raspberry leaves, and loosestrife in acute murine campylobacteriosis. Therefore, C. jejuni-infected microbiota-depleted IL-10-/- mice were orally treated with the compounds alone or all in combination from day 2 until day 6 post-infection. Whereas neither treatment regimen affected gastrointestinal pathogen loads, the combination of compounds alleviated C. jejuni-induced diarrheal symptoms in diseased mice on day 6 post-infection. Furthermore, the therapeutic application of tormentil and menthol alone and the combination of the four compounds resulted in lower colonic T cell numbers in infected mice when compared to placebo counterparts. Notably, pro-inflammatory cytokines measured in mesenteric lymph nodes taken from C. jejuni-infected mice following tormentil, menthol, and combination treatment did not differ from basal concentrations. However, neither treatment regimen could dampen extra-intestinal immune responses, including systemic pro-inflammatory cytokine secretion on day 6 post-infection. In conclusion, the combination of menthol and of extracts from tormentil, raspberry leaves, and loosestrife constitutes an antibiotic-independent approach to alleviate campylobacteriosis symptoms.
RESUMO
Aberrant CD4+ T cell reactivity against intestinal microorganisms is considered to drive mucosal inflammation in inflammatory bowel diseases. The disease-relevant microbial species and the corresponding microorganism-specific, pathogenic T cell phenotypes remain largely unknown. In the present study, we identified common gut commensal and food-derived yeasts, as direct activators of altered CD4+ T cell reactions in patients with Crohn's disease (CD). Yeast-responsive CD4+ T cells in CD display a cytotoxic T helper cell (TH1 cell) phenotype and show selective expansion of T cell clones that are highly cross-reactive to several commensal, as well as food-derived, fungal species. This indicates cross-reactive T cell selection by repeated encounter with conserved fungal antigens in the context of chronic intestinal disease. Our results highlighted a role of yeasts as drivers of aberrant CD4+ T cell reactivity in patients with CD and suggest that both gut-resident fungal commensals and daily dietary intake of yeasts might contribute to chronic activation of inflammatory CD4+ T cell responses in patients with CD.
Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/microbiologia , Linfócitos T CD4-Positivos , Doenças Inflamatórias Intestinais/patologia , Linfócitos T Auxiliares-Indutores , Células Clonais/patologia , Mucosa Intestinal/patologia , Células Th17/patologia , Células Th1/patologiaRESUMO
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by inflammation and neurodegeneration. Current research suggests that diet may influence disease course, severity of symptoms, and quality of life in MS patients. The ketogenic diet (KD) has been used for more than a century as a therapeutic approach for various medical conditions. It was originally developed in the 1920s as a treatment option for epilepsy, and especially in the last 30 years, has gained popularity for its potential benefits in a variety of neurological conditions other than epilepsy. This prompted us to perform a literature survey regarding the effect of KD on the onset and progression of MS. The here reviewed 15 original research articles including in vitro, preclinical, and clinical studies provide evidence for the safety and feasibility of the KD in MS, showing potential neuroprotective effects and positive impacts on cellular metabolism and disease outcome. Since the literature is limited and most studies were conducted with low numbers of MS patients and rather exploratory in nature, further studies with larger cohorts are needed to gain a better understanding of the mechanisms by which the improvements of the MS disease course are achieved.
RESUMO
The prevalence of Campylobacter jejuni infections is increasing worldwide and responsible for significant morbidities and socioeconomic expenses. The rise in antimicrobial resistance of C. jejuni underscores the urge for evaluating antibiotics-independent compounds as therapeutic and preventive treatment options of human campylobacteriosis. Given its well-known anti-microbial and immune-modulatory properties we here surveyed the disease-modifying effects of trans-cinnamaldehyde pretreatment in experimental campylobacteriosis. Therefore, secondary abiotic IL-10-/- mice were orally challenged with trans-cinnamaldehyde starting 7 days prior C. jejuni infection. Whereas gastrointestinal colonization properties of the enteropathogens remained unaffected, trans-cinnamaldehyde pretreatment did not only improve clinical signs in infected mice, but also alleviated colonic epithelial cell apoptosis on day 6 post-infection. Furthermore, trans-cinnamaldehyde application resulted in less pronounced T cell responses in the colon that were accompanied by dampened proinflammatory mediator secretion in distinct intestinal compartments. Notably, the immune-modulatory effects of trans-cinnamaldehyde were not restricted to the intestinal tract but could also be observed in extra-intestinal organs such as the liver and kidneys. In conclusion, our preclinical placebo-controlled intervention study provides first evidence that due to its immune-modulatory effects, trans-cinnamaldehyde constitutes a promising prophylactic option to alleviate campylobacteriosis.