Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2215428120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976767

RESUMO

Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.


Assuntos
Animais Selvagens , Epidemias , Animais , Comunicação , Peixes , Campos Visuais
2.
Curr Opin Neurobiol ; 74: 102551, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576827

RESUMO

The interactions an animal has with its prey, predators, neighbors, and competitors are known as ecological interactions. Making effective decisions during ecological interactions poses fundamental challenges for the nervous system. Among these are the need to filter relevant information out of complex and ever-changing sensory scenes, to balance competing objectives, and to generate robust behavior amid the strong mutual feedbacks that occur during interactions with other animals. Here, I review recent advancements in the study of ecological decision-making. Using research with fishes, I illustrate how knowledge of ethology and brain circuitry are converging to yield a more holistic understanding of how the brain solves these problems to produce robust sequences of natural behavior.


Assuntos
Etologia , Peixes , Animais , Encéfalo
3.
Ecol Lett ; 24(5): 1007-1017, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33694319

RESUMO

Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2  = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease-fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.


Assuntos
Ecossistema , Incêndios , Florestas , Pradaria , Árvores
4.
Proc Natl Acad Sci U S A ; 117(41): 25580-25589, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989156

RESUMO

Anthropogenic environmental change is altering the behavior of animals in ecosystems around the world. Although behavior typically occurs on much faster timescales than demography, it can nevertheless influence demographic processes. Here, we use detailed data on behavior and empirical estimates of demography from a coral reef ecosystem to develop a coupled behavioral-demographic ecosystem model. Analysis of the model reveals that behavior and demography feed back on one another to determine how the ecosystem responds to anthropogenic forcing. In particular, an empirically observed feedback between the density and foraging behavior of herbivorous fish leads to alternative stable ecosystem states of coral population persistence or collapse (and complete algal dominance). This feedback makes the ecosystem more prone to coral collapse under fishing pressure but also more prone to recovery as fishing is reduced. Moreover, because of the behavioral feedback, the response of the ecosystem to changes in fishing pressure depends not only on the magnitude of changes in fishing but also on the pace at which changes are imposed. For example, quickly increasing fishing to a given level can collapse an ecosystem that would persist under more gradual change. Our results reveal conditions under which the pace and not just the magnitude of external forcing can dictate the response of ecosystems to environmental change. More generally, our multiscale behavioral-demographic framework demonstrates how high-resolution behavioral data can be incorporated into ecological models to better understand how ecosystems will respond to perturbations.


Assuntos
Mudança Climática , Ecossistema , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Animais , Antozoários/fisiologia , Recifes de Corais , Peixes/fisiologia , Herbivoria/fisiologia , Atividades Humanas , Humanos
5.
Curr Biol ; 30(11): R663-R675, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32516620

RESUMO

Uncovering the mechanisms and implications of natural behavior is a goal that unites many fields of biology. Yet, the diversity, flexibility, and multi-scale nature of these behaviors often make understanding elusive. Here, we review studies of animal pursuit and evasion - two special classes of behavior where theory-driven experiments and new modeling techniques are beginning to uncover the general control principles underlying natural behavior. A key finding of these studies is that intricate sequences of pursuit and evasion behavior can often be constructed through simple, repeatable rules that link sensory input to motor output: we refer to these rules as behavioral algorithms. Identifying and mathematically characterizing these algorithms has led to important insights, including the discovery of guidance rules that attacking predators use to intercept mobile prey, and coordinated neural and biomechanical mechanisms that animals use to avoid impending collisions. Here, we argue that algorithms provide a good starting point for studies of natural behavior more generally. Rather than beginning at the neural or ecological levels of organization, we advocate starting in the middle, where the algorithms that link sensory input to behavioral output can provide a solid foundation from which to explore both the implementation and the ecological outcomes of behavior. We review insights that have been gained through such an algorithmic approach to pursuit and evasion behaviors. From these, we synthesize theoretical principles and lay out key modeling tools needed to apply an algorithmic approach to the study of other complex natural behaviors.


Assuntos
Algoritmos , Comportamento Animal , Simulação por Computador , Animais
6.
J Vis Exp ; (155)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32065137

RESUMO

We demonstrate a method for the generation of controlled, dynamic chemical pulses-where localized chemoattractant becomes suddenly available at the microscale-to create micro-environments for microbial chemotaxis experiments. To create chemical pulses, we developed a system to introduce amino acid sources near-instantaneously by photolysis of caged amino acids within a polydimethylsiloxane (PDMS) microfluidic chamber containing a bacterial suspension. We applied this method to the chemotactic bacterium, Vibrio ordalii, which can actively climb these dynamic chemical gradients while being tracked by video microscopy. Amino acids, rendered biologically inert ('caged') by chemical modification with a photoremovable protecting group, are uniformly present in the suspension but not available for consumption until their sudden release, which occurs at user-defined points in time and space by means of a near-UV-A focused LED beam. The number of molecules released in the pulse can be determined by a calibration relationship between exposure time and uncaging fraction, where the absorption spectrum after photolysis is characterized by using UV-Vis spectroscopy. A nanoporous polycarbonate (PCTE) membrane can be integrated into the microfluidic device to allow the continuous removal by flow of the uncaged compounds and the spent media. A strong, irreversible bond between the PCTE membrane and the PDMS microfluidic structure is achieved by coating the membrane with a solution of 3-aminopropyltriethoxysilane (APTES) followed by plasma activation of the surfaces to be bonded. A computer-controlled system can generate user-defined sequences of pulses at different locations and with different intensities, so as to create resource landscapes with prescribed spatial and temporal variability. In each chemical landscape, the dynamics of bacterial movement at the individual scale and their accumulation at the population level can be obtained, thereby allowing the quantification of chemotactic performance and its effects on bacterial aggregations in ecologically relevant environments.


Assuntos
Dispositivos Lab-On-A-Chip/normas , Microfluídica/instrumentação , Humanos
7.
Nat Ecol Evol ; 4(1): 82-90, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659309

RESUMO

The dynamics of large ecological systems result from vast numbers of interactions between individual organisms. Here, we develop mathematical theory to show that the rate of such interactions is inherently limited by the ability of organisms to gain information about one another. This phenomenon, which we call 'information limitation', is likely to be widespread in real ecological systems and can dictate both the rates of ecological interactions and long-run dynamics of interacting populations. We show how information limitation leads to sigmoid interaction rate functions that can stabilize antagonistic interactions and destabilize mutualistic ones; as a species or type becomes rare, information on its whereabouts also becomes rare, weakening coupling with consumers, pathogens and mutualists. This can facilitate persistence of consumer-resource systems, alter the course of pathogen infections within a host and enhance the rates of oceanic productivity and carbon export. Our findings may shed light on phenomena in many living systems where information drives interactions.


Assuntos
Ecossistema , Simbiose , Ecologia
8.
Proc Natl Acad Sci U S A ; 116(22): 10792-10797, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31097577

RESUMO

Ephemeral aggregations of bacteria are ubiquitous in the environment, where they serve as hotbeds of metabolic activity, nutrient cycling, and horizontal gene transfer. In many cases, these regions of high bacterial concentration are thought to form when motile cells use chemotaxis to navigate to chemical hotspots. However, what governs the dynamics of bacterial aggregations is unclear. Here, we use an experimental platform to create realistic submillimeter-scale nutrient pulses with controlled nutrient concentrations. By combining experiments, mathematical theory, and agent-based simulations, we show that individual Vibrio ordalii bacteria begin chemotaxis toward hotspots of dissolved organic matter (DOM) when the magnitude of the chemical gradient rises sufficiently far above the sensory noise that is generated by stochastic encounters with chemoattractant molecules. Each DOM hotspot is surrounded by a dynamic ring of chemotaxing cells, which congregate in regions of high DOM concentration before dispersing as DOM diffuses and gradients become too noisy for cells to respond to. We demonstrate that V. ordalii operates close to the theoretical limits on chemotactic precision. Numerical simulations of chemotactic bacteria, in which molecule counting noise is explicitly taken into account, point at a tradeoff between nutrient acquisition and the cost of chemotactic precision. More generally, our results illustrate how limits on sensory precision can be used to understand the location, spatial extent, and lifespan of bacterial behavioral responses in ecologically relevant environments.


Assuntos
Bactérias , Quimiotaxia/fisiologia , Modelos Biológicos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fatores Quimiotáticos/farmacologia , Simulação por Computador , Meio Ambiente , Razão Sinal-Ruído , Vibrio/efeitos dos fármacos , Vibrio/fisiologia
9.
Proc Natl Acad Sci U S A ; 115(48): 12224-12228, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420510

RESUMO

To evade their predators, animals must quickly detect potential threats, gauge risk, and mount a response. Putative neural circuits responsible for these tasks have been isolated in laboratory studies. However, it is unclear whether and how these circuits combine to generate the flexible, dynamic sequences of evasion behavior exhibited by wild, freely moving animals. Here, we report that evasion behavior of wild fish on a coral reef is generated through a sequence of well-defined decision rules that convert visual sensory input into behavioral actions. Using an automated system to present visual threat stimuli to fish in situ, we show that individuals initiate escape maneuvers in response to the perceived size and expansion rate of an oncoming threat using a decision rule that matches dynamics of known loom-sensitive neural circuits. After initiating an evasion maneuver, fish adjust their trajectories using a control rule based on visual feedback to steer away from the threat and toward shelter. These decision rules accurately describe evasion behavior of fish from phylogenetically distant families, illustrating the conserved nature of escape decision-making. Our results reveal how the flexible behavioral responses required for survival can emerge from relatively simple, conserved decision-making mechanisms.


Assuntos
Peixes/fisiologia , Animais , Animais Selvagens/fisiologia , Recifes de Corais , Tomada de Decisões , Reação de Fuga , Peixes/classificação , Comportamento Predatório , Natação , Visão Ocular
10.
Proc Biol Sci ; 285(1878)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769362

RESUMO

Ecologists have long sought to understand the dynamics of populations and communities by deriving mathematical theory from first principles. Theoretical models often take the form of dynamical equations that comprise the ecological processes (e.g. competition, predation) believed to govern system dynamics. The inverse of this approach-inferring which processes and ecological interactions drive observed dynamics-remains an open problem in ecology. Here, we propose a way to attack this problem using a machine learning method known as symbolic regression, which seeks to discover relationships in time-series data and to express those relationships using dynamical equations. We found that this method could rapidly discover models that explained most of the variance in three classic demographic time series. More importantly, it reverse-engineered the models previously proposed by theoretical ecologists to describe these time series, capturing the core ecological processes these models describe and their functional forms. Our findings suggest a potentially powerful new way to merge theory development and data analysis.


Assuntos
Ecologia/métodos , Aprendizado de Máquina , Modelos Biológicos
11.
Trends Ecol Evol ; 33(7): 535-548, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748042

RESUMO

When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities.


Assuntos
Invertebrados/fisiologia , Comportamento Social , Vertebrados/fisiologia , Animais , Modelos Biológicos , Dinâmica Populacional
12.
Artigo em Inglês | MEDLINE | ID: mdl-29581390

RESUMO

Mobile animal groups provide some of the most compelling examples of self-organization in the natural world. While field observations of songbird flocks wheeling in the sky or anchovy schools fleeing from predators have inspired considerable interest in the mechanics of collective motion, the challenge of simultaneously monitoring multiple animals in the field has historically limited our capacity to study collective behaviour of wild animal groups with precision. However, recent technological advancements now present exciting opportunities to overcome many of these limitations. Here we review existing methods used to collect data on the movements and interactions of multiple animals in a natural setting. We then survey emerging technologies that are poised to revolutionize the study of collective animal behaviour by extending the spatial and temporal scales of inquiry, increasing data volume and quality, and expediting the post-processing of raw data.This article is part of the theme issue 'Collective movement ecology'.


Assuntos
Comportamento Animal , Ecologia/métodos , Etologia/métodos , Movimento , Animais , Comportamento Social
13.
Proc Natl Acad Sci U S A ; 114(18): 4703-4708, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28396400

RESUMO

In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.


Assuntos
Comportamento Animal/fisiologia , Recifes de Corais , Peixes/fisiologia , Modelos Biológicos , Comportamento Social , Animais
14.
Trends Neurosci ; 39(10): 649-655, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27594700

RESUMO

Behavioral evidence from phylogenetically diverse animals and from humans suggests that, by extracting temporal information inherent in the olfactory signal, olfaction is more involved in interpreting space and time than heretofore imagined. If this is the case, the olfactory system must have neural mechanisms capable of encoding time at intervals relevant to the turbulent odor world in which many animals live. Here, we review evidence that animals can use populations of rhythmically active or 'bursting' olfactory receptor neurons (bORNs) to extract and encode temporal information inherent in natural olfactory signals. We postulate that bORNs represent an unsuspected neural mechanism through which time can be accurately measured, and that 'smelling time' completes the requirements for true olfactory scene analysis.


Assuntos
Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Periodicidade , Olfato/fisiologia , Animais , Humanos , Odorantes , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 113(34): 9413-20, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27496324

RESUMO

The ability to navigate is a hallmark of living systems, from single cells to higher animals. Searching for targets, such as food or mates in particular, is one of the fundamental navigational tasks many organisms must execute to survive and reproduce. Here, we argue that a recent surge of studies of the proximate mechanisms that underlie search behavior offers a new opportunity to integrate the biophysics and neuroscience of sensory systems with ecological and evolutionary processes, closing a feedback loop that promises exciting new avenues of scientific exploration at the frontier of systems biology.


Assuntos
Algoritmos , Tomada de Decisões/fisiologia , Comportamento Exploratório/fisiologia , Preferência de Acasalamento Animal/fisiologia , Reconhecimento Fisiológico de Modelo , Reprodução/fisiologia , Animais , Evolução Biológica , Quimiotaxia/fisiologia , Ecologia , Escherichia coli/fisiologia , Atrativos Sexuais/biossíntese , Atrativos Sexuais/metabolismo , Biologia de Sistemas
17.
PLoS Comput Biol ; 12(1): e1004682, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26730727

RESUMO

Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal's ability to locate the source of odor cues in realistic turbulent environments-a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.


Assuntos
Comportamento Apetitivo/fisiologia , Modelos Neurológicos , Odorantes/análise , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Biologia Computacional
18.
J R Soc Interface ; 13(114): 20150844, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26763331

RESUMO

Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to the square root of time before rapidly contracting. Our analysis also reveals how chemokinesis-the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold-may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are 'near' and 'far' from chemical hotspots in complex, rapidly evolving environments such as those that dominate aquatic ecosystems.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Modelos Biológicos
19.
Elife ; 4: e10955, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26652003

RESUMO

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.


Assuntos
Comportamento Animal , Peixes/fisiologia , Comportamento Social , Animais , Evolução Biológica , Modelos Biológicos
20.
Nat Commun ; 5: 5575, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412873

RESUMO

Top predators are a critical part of healthy ecosystems. Yet, these species are often absent from spatially isolated habitats leading to the pervasive view that fragmented ecological communities collapse from the top down. Here we study reef fish from coral reef communities across the Pacific Ocean. Our analysis shows that species richness of reef fish top predators is relatively stable across habitats that vary widely in spatial isolation and total species richness. In contrast, species richness of prey reef fish declines rapidly with increasing isolation. By consequence, species-poor communities from isolated islands have three times as many predator species per prey species as near-shore communities. We develop and test a colonization-extinction model to reveal how larval dispersal patterns shape this ocean-scale gradient in trophic structure.


Assuntos
Distribuição Animal , Ecossistema , Cadeia Alimentar , Larva/fisiologia , Animais , Organismos Aquáticos , Recifes de Corais , Peixes , Oceano Pacífico , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA