Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Am J Ophthalmol ; 239: 230-243, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35307380

RESUMO

PURPOSE: To investigate the effect of stanniocalcin-1 (STC-1), a secreted polypeptide exhibiting multiple functions in cell survival and death, on photoreceptor degeneration in a porcine model of retinitis pigmentosa (RP). METHODS: P23H transgenic pigs (TG P23H) and wild-type hybrid littermates were obtained from the National Swine Resource and Research Center. Human recombinant STC-1 was injected intravitreally every 2 weeks from postnatal day 15 (P15) to P75. The contralateral eye was injected with balanced salt solution as a control. Electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed to evaluate retinal function and morphology in vivo at P90. Retinal tissue was collected for histologic analysis and molecular assays to evaluate the antioxidative and anti-inflammatory mechanisms by which STC-1 may rescue photoreceptor degeneration. RESULTS: Intravitreal injection of STC-1 improved retinal function in TG P23H pigs with increased photopic and flicker ERG a- and b-wave amplitudes. Greater integrity of the ellipsoid zone (EZ) band on SD-OCT and morphologic rescue with preservation of cone photoreceptors were observed in STC-1-treated TG P23H pigs. STC-1 altered gene expression in TG P23H pig retina on microarray analysis and increased photoreceptor specific gene expression by reverse transcription-polymerase chain reaction analysis. STC-1 significantly decreased oxidative stress and the expressions of NLRP3 inflammasome, cleaved caspase-1, and IL-1ß in TG P23H pig retina. CONCLUSIONS: Intravitreal administration of STC-1 enhances cone photoreceptor function, improves EZ integrity, and reduces retinal degeneration through antioxidative and anti-inflammatory effects in a large animal (pig) model of the most common form of autosomal dominant RP in the United States.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glicoproteínas , Humanos , Inflamação , Estresse Oxidativo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/prevenção & controle , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Suínos
2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613929

RESUMO

In diabetes, the enzyme arginase is upregulated, which may compete with endothelial nitric oxide (NO) synthase (eNOS) for their common substrate L-arginine and compromise NO-mediated vasodilation. However, this eNOS uncoupling can lead to superoxide production and possibly vasodilator hydrogen peroxide (H2O2) formation to compensate for NO deficiency. This hypothesis was tested in coronary arterioles isolated from pigs with 2-week diabetes after streptozocin injection. The NO-mediated vasodilation induced by flow and VEGF was abolished by NOS inhibitor L-NAME and phosphoinositide 3-kinase (PI3K) inhibitor wortmannin but was not affected by arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA) or H2O2 scavenger catalase in control pigs. With diabetes, this vasodilation was partially blunted, and the remaining vasodilation was abolished by catalase and wortmannin. Administration of L-arginine or nor-NOHA restored flow-induced vasodilation in an L-NAME sensitive manner. Diabetes did not alter vascular superoxide dismutase 1, catalase, and glutathione peroxidase mRNA levels. This study demonstrates that endothelium-dependent NO-mediated coronary arteriolar dilation is partially compromised in early type 1 diabetes by reducing eNOS substrate L-arginine via arginase activation. It appears that upregulated arginase contributes to endothelial NO deficiency in early diabetes, but production of H2O2 during PI3K-linked eNOS uncoupling likely compensates for and masks this disturbance.


Assuntos
Diabetes Mellitus Tipo 1 , Peróxido de Hidrogênio , Suínos , Animais , Arteríolas , Peróxido de Hidrogênio/farmacologia , Fosfatidilinositol 3-Quinases , NG-Nitroarginina Metil Éster/farmacologia , Arginase/genética , Catalase , Fator A de Crescimento do Endotélio Vascular , Fosfatidilinositol 3-Quinase , Wortmanina/farmacologia , Dilatação , Vasos Coronários , Óxido Nítrico Sintase Tipo III/genética , Vasodilatação , Arginina/farmacologia , Endotélio Vascular
3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575925

RESUMO

Protein kinase C (PKC) activation can evoke vasoconstriction and contribute to coronary disease. However, it is unclear whether PKC activation, without activating the contractile machinery, can lead to coronary arteriolar dysfunction. The vasoconstriction induced by the PKC activator phorbol 12,13-dibutyrate (PDBu) was examined in isolated porcine coronary arterioles. The PDBu-evoked vasoconstriction was sensitive to a broad-spectrum PKC inhibitor but not affected by inhibiting PKCß2 or Rho kinase. After exposure of the vessels to a sub-vasomotor concentration of PDBu (1 nmol/L, 60 min), the endothelium-dependent nitric oxide (NO)-mediated dilations in response to serotonin and adenosine were compromised but the dilation induced by the NO donor sodium nitroprusside was unaltered. PDBu elevated superoxide production, which was blocked by the superoxide scavenger Tempol. The impaired NO-mediated vasodilations were reversed by Tempol or inhibition of PKCß2, xanthine oxidase, c-Jun N-terminal kinase (JNK) and Rho kinase but were not affected by a hydrogen peroxide scavenger or inhibitors of NAD(P)H oxidase and p38 kinase. The PKCß2 protein was detected in the arteriolar wall and co-localized with endothelial NO synthase. In conclusion, activation of PKCß2 appears to compromise NO-mediated vasodilation via Rho kinase-mediated JNK signaling and superoxide production from xanthine oxidase, independent of the activation of the smooth muscle contractile machinery.


Assuntos
Vasos Coronários/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Proteína Quinase C beta/metabolismo , Vasodilatação , Animais , Imuno-Histoquímica , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Dibutirato de 12,13-Forbol/farmacologia , Proteína Quinase C beta/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Suínos , Vasodilatação/genética , Vasodilatadores/farmacologia , Xantina Oxidase/metabolismo
4.
Diabetes ; 70(10): 2353-2363, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353852

RESUMO

Diabetes elevates endothelin-1 (ET-1) in the vitreous and enhances constriction of retinal venules to this peptide. However, mechanisms contributing to ET-1-induced constriction of retinal venules are incompletely understood. We examined roles of sodium-hydrogen exchanger 1 (NHE1), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and extracellular calcium (Ca2+) in retinal venular constriction to ET-1 and the impact of diabetes on these signaling molecules. Retinal venules were isolated from control pigs and pigs with streptozocin-induced diabetes for in vitro studies. ET-1-induced vasoconstriction was abolished in the absence of extracellular Ca2+ and sensitive to c-Jun N-terminal kinase (JNK) inhibitor SP600125 but unaffected by extracellular signal-regulated kinase (ERK) inhibitor PD98059, p38 kinase inhibitor SB203580, or broad-spectrum PKC inhibitor Gö 6983. Diabetes (after 2 weeks) enhanced venular constriction to ET-1, which was insensitive to PD98059 and Gö 6983 but was prevented by NHE1 inhibitor cariporide, SB203580, and SP600125. In conclusion, extracellular Ca2+ entry and activation of JNK, independent of ERK and PKC, mediate constriction of retinal venules to ET-1. Diabetes activates p38 MAPK and NHE1, which cause enhanced venular constriction to ET-1. Treatments targeting these vascular molecules may lessen retinal complications in early diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Endotelina-1/farmacologia , Veia Retiniana , Trocador 1 de Sódio-Hidrogênio/fisiologia , Vasoconstrição , Animais , Cálcio/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/fisiopatologia , Endotelina-1/sangue , Endotelina-1/fisiologia , Imidazóis/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Piridinas/farmacologia , Veia Retiniana/efeitos dos fármacos , Veia Retiniana/metabolismo , Veia Retiniana/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Trocador 1 de Sódio-Hidrogênio/genética , Suínos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Methods Mol Biol ; 2319: 77-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331245

RESUMO

The laser-induced choroidal neovascularization (CNV) model has been widely used for research on wet age-related macular degeneration (wet-AMD) and other ocular neovascular diseases. In this model, the Bruch membrane is perforated by laser injury, resulting in neovascularization formed from the choroidal capillaries. It has become a standard method to evaluate the effect of different treatments on CNV progression in preclinical studies. This protocol can be used in various species, including rat, mouse, pig, and monkey. The rodent laser-induced CNV model is the most commonly used because of the advantages in both cost- and time-efficiency. It takes only 10-15 min to complete the whole laser procedure after adequate training and practicing the technique. Peak CNV formation occurs at approximately 2 weeks after laser application. The entire protocol may require up to 3 weeks to complete the treatment, fundus image acquisition, and tissue collection for histologic analysis. This chapter describes the detailed procedures, protocols, and useful notes on how to induce CNV by laser.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Anestesia , Animais , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Lasers , Degeneração Macular/patologia , Ratos
6.
Methods Mol Biol ; 2319: 111-117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331249

RESUMO

The retina offers a unique opportunity to directly visualize blood vessels in vivo noninvasively. Over the past few decades, several new imaging techniques have been adapted to study the retinal vasculature in the laboratory in animal models and in the clinic in human subjects. High-contrast, finely detailed fundus images can be acquired by confocal scanning laser ophthalmoscopy (cSLO). With fluorescein angiography (FA), the retinal microcirculation can be visualized. High-resolution spectral-domain optical coherence tomography (SD-OCT) is able to acquire cross-section images resolving the microarchitecture of the retina, similar to histology. The techniques and protocols for acquiring cSLO, FA, and SD-OCT imaging of the retinal vasculature and morphology in the rodent are described.


Assuntos
Angiofluoresceinografia/métodos , Oftalmoscopia/métodos , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Animais , Angiofluoresceinografia/instrumentação , Retina/metabolismo , Vasos Retinianos/metabolismo , Tomografia de Coerência Óptica/instrumentação
7.
Transl Vis Sci Technol ; 9(9): 1, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32879758

RESUMO

Purpose: Endothelin-1 (ET-1) is a potent vasoactive factor implicated in development of diabetic retinopathy, which is commonly associated with retinal edema and hyperglycemia. Although the vasomotor activity of venules contributes to the regulation of tissue fluid homeostasis, responses of human retinal venules to ET-1 under euglycemia and hyperglycemia remain unknown and the ET-1 receptor subtype corresponding to vasomotor function has not been determined. Herein, we addressed these issues by examining the reactivity of isolated human retinal venules to ET-1, and results from porcine retinal venules were compared. Methods: Retinal tissues were obtained from patients undergoing enucleation. Human and porcine retinal venules were isolated and pressurized to assess diameter changes in response to ET-1 after exposure to 5 mM control glucose or 25 mM high glucose for 2 hours. Results: Both human and porcine retinal venules exposed to control glucose developed similar basal tone and constricted comparably to ET-1 in a concentration-dependent manner. ET-1-induced constrictions of human and porcine retinal venules were abolished by ETA receptor antagonist BQ123. During high glucose exposure, basal tone of human and porcine retinal venules was unaltered but ET-1-induced vasoconstrictions were enhanced. Conclusions: ET-1 elicits comparable constriction of human and porcine retinal venules by activation of ETA receptors. In vitro hyperglycemia augments human and porcine retinal venular responses to ET-1. Translational Relevance: Similarities in vasoconstriction to ET-1 between human and porcine retinal venules support the latter as an effective model of the human retinal microcirculation to help identify vascular targets for the treatment of retinal complications in patients with diabetes.


Assuntos
Endotelina-1 , Hiperglicemia , Animais , Constrição , Humanos , Suínos , Vasoconstrição , Vênulas
8.
Invest Ophthalmol Vis Sci ; 61(5): 36, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32437549

RESUMO

Purpose: Retinal vasomotor activity can be regulated by two major endothelial enzymes, nitric oxide synthase (NOS) and cyclooxygenase (COX). The vascular arginase also consumes a NOS substrate and thus impedes NOS-mediated vasodilation. Diabetes mellitus exhibits vascular complications in the retina with elevated oxidative stress and compromised NOS-mediated vasodilation. However, the underlying molecular mechanisms remain unclear, and the effect of diabetes on COX-mediated vasodilation is unknown. Herein, we examined the relative impact of diabetes on retinal arteriolar dilations to COX and NOS activation and the roles of arginase and superoxide in diabetes-induced vasomotor dysfunction. Methods: Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks of hyperglycemia, 433 ± 27 mg/dL) or age-matched control pigs (97 ± 4 mg/dL). The vasodilations to bradykinin (NOS activator) and histamine (NOS/COX activator) were examined in vitro. Results: Retinal arteriolar dilations to histamine and bradykinin were significantly reduced after 2 weeks of diabetes. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) attenuated the dilations of control vessels, but not diabetic vessels, to histamine. In the presence of L-NAME and COX inhibitor indomethacin, histamine-induced dilations of control and diabetic vessels were reduced similarly. Treatment of diabetic vessels with arginase inhibitor nor-NOHA, but not superoxide dismutase mimetic TEMPOL, preserved both histamine- and bradykinin-induced dilations in an L-NAME-sensitive manner. Conclusions: Arginase, rather than superoxide, impairs endothelium-dependent NOS-mediated dilation of retinal arterioles during diabetes, whereas vasodilation mediated by COX remains intact. Blockade of vascular arginase may improve endothelial function of retinal arterioles during early onset of diabetes.


Assuntos
Arginase/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Endotélio Vascular/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Retiniana/fisiologia , Vasodilatação/fisiologia , Animais , Arteríolas/fisiologia , Glicemia/metabolismo , Bradicinina/farmacologia , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/enzimologia , Inibidores Enzimáticos/farmacologia , Histamina/farmacologia , Hiperglicemia/fisiopatologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Sus scrofa
9.
Hepatology ; 71(3): 990-1008, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31344280

RESUMO

BACKGROUND AND AIMS: Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. APPROACH AND RESULTS: While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. CONCLUSIONS: Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.


Assuntos
Ductos Biliares/patologia , Colestase/patologia , Cirrose Hepática/etiologia , Monoaminoxidase/fisiologia , Receptores de Serotonina/fisiologia , Serotonina/fisiologia , Triptofano Hidroxilase/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Animais , Proliferação de Células , Colangite Esclerosante/etiologia , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/fisiologia , Receptor 5-HT2B de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Serotonina/sangue , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
10.
J Am Heart Assoc ; 8(22): e013673, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31698979

RESUMO

Background We recently discovered a small endogenous peptide, peptide Lv, with the ability to activate vascular endothelial growth factor receptor 2 and its downstream signaling. As vascular endothelial growth factor through vascular endothelial growth factor receptor 2 contributes to normal development, vasodilation, angiogenesis, and pathogenesis of various diseases, we investigated the role of peptide Lv in vasodilation and developmental and pathological angiogenesis in this study. Methods and Results The endothelial cell proliferation, migration, and 3-dimensional sprouting assays were used to test the abilities of peptide Lv in angiogenesis in vitro. The chick chorioallantoic membranes and early postnatal mice were used to examine its impact on developmental angiogenesis. The oxygen-induced retinopathy and laser-induced choroidal neovascularization mouse models were used for in vivo pathological angiogenesis. The isolated porcine retinal and coronary arterioles were used for vasodilation assays. Peptide Lv elicited angiogenesis in vitro and in vivo. Peptide Lv and vascular endothelial growth factor acted synergistically in promoting endothelial cell proliferation. Peptide Lv-elicited vasodilation was not completely dependent on nitric oxide, indicating that peptide Lv had vascular endothelial growth factor receptor 2/nitric oxide-independent targets. An antibody against peptide Lv, anti-Lv, dampened vascular endothelial growth factor-elicited endothelial proliferation and laser-induced vascular leakage and choroidal neovascularization. While the pathological angiogenesis in mouse eyes with oxygen-induced retinopathy was enhanced by exogenous peptide Lv, anti-Lv dampened this process. Furthermore, deletion of peptide Lv in mice significantly decreased pathological neovascularization compared with their wild-type littermates. Conclusions These results demonstrate that peptide Lv plays a significant role in pathological angiogenesis but may be less critical during development. Peptide Lv is involved in pathological angiogenesis through vascular endothelial growth factor receptor 2-dependent and -independent pathways. As anti-Lv dampened the pathological angiogenesis in the eye, anti-Lv may have a therapeutic potential to treat pathological angiogenesis.


Assuntos
Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Membrana Corioalantoide/efeitos dos fármacos , Neovascularização Patológica/genética , Peptídeos/genética , Peptídeos/farmacologia , Vasos Retinianos/efeitos dos fármacos , Animais , Arteríolas/efeitos dos fármacos , Ensaios de Migração Celular , Proliferação de Células/genética , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Vasos Coronários/efeitos dos fármacos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Cães , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Artéria Retiniana/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sus scrofa , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Lab Chip ; 19(15): 2500-2511, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31246211

RESUMO

Development of therapeutic approaches to treat vascular dysfunction and thrombosis at disease- and patient-specific levels is an exciting proposed direction in biomedical research. However, this cannot be achieved with animal preclinical models alone, and new in vitro techniques, like human organ-on-chips, currently lack inclusion of easily obtainable and phenotypically-similar human cell sources. Therefore, there is an unmet need to identify sources of patient primary cells and apply them in organ-on-chips to increase personalized mechanistic understanding of diseases and to assess drugs. In this study, we provide a proof-of-feasibility of utilizing blood outgrowth endothelial cells (BOECs) as a disease-specific primary cell source to analyze vascular inflammation and thrombosis in vascular organ-chips or "vessel-chips". These blood-derived BOECs express several factors that confirm their endothelial identity. The vessel-chips are cultured with BOECs from healthy or diabetic patients and form an intact 3D endothelial lumen. Inflammation of the BOEC endothelium with exogenous cytokines reveals vascular dysfunction and thrombosis in vitro similar to in vivo observations. Interestingly, our study with vessel-chips also reveals that unstimulated BOECs of type 1 diabetic pigs show phenotypic behavior of the disease - high vascular dysfunction and thrombogenicity - when compared to control BOECs or normal primary endothelial cells. These results demonstrate the potential of organ-on-chips made from autologous endothelial cells obtained from blood in modeling vascular pathologies and therapeutic outcomes at a disease and patient-specific level.


Assuntos
Células Sanguíneas/patologia , Células Progenitoras Endoteliais/patologia , Dispositivos Lab-On-A-Chip , Trombose/patologia , Adulto , Proliferação de Células , Estudos de Viabilidade , Humanos , Estresse Oxidativo , Trombose/sangue
12.
Diabetes ; 68(8): 1624-1634, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31088854

RESUMO

Diabetes is associated with hyperglycemia and impairment of retinal microvascular function. However, the impact of hyperglycemia on retinal venular constriction remains unknown. We examined retinal venular responsiveness to endogenous vasoconstrictors and the contribution of the reverse-mode sodium-calcium exchanger (NCX) to these responses during hyperglycemia. Retinal venules were isolated from pigs with streptozocin-induced diabetes (2 weeks, in vivo hyperglycemia) and age-matched control pigs for vasoreactivity and molecular studies. For in vitro hyperglycemia, vessels from euglycemic pigs were exposed to high glucose (25 mmol/L) for 2 h, and 5 mmol/L glucose served as the control. Constrictions of venules from euglycemic pigs to endothelin-1 (ET-1), thromboxane analog U46619, and norepinephrine were mediated by ETA, thromboxane, and α2-adrenergic receptors, respectively, and were insensitive to reverse-mode NCX blockade (KB-R7943). In vivo hyperglycemia enhanced these vasoconstrictions without altering respective receptor mRNA expression. Similarly, in vitro hyperglycemia augmented venular constrictions. Enhanced vasoconstrictions during hyperglycemia were prevented by KB-R7943, while mRNA expression of venular NCX isoforms was unaltered. In vivo hyperglycemia increased vitreous levels of ET-1 but not thromboxane B2 In conclusion, both in vitro and in vivo hyperglycemia enhance retinal venular responses to endogenous vasoconstrictors by activating reverse-mode NCX. Therapies targeting this vascular molecule may alleviate retinal complications during diabetes.


Assuntos
Endotelina-1/metabolismo , Hiperglicemia/metabolismo , Retina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Endotelina-1/genética , Hiperglicemia/fisiopatologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos dos fármacos , Retina/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Suínos , Tromboxanos/farmacologia , Vasoconstrição/fisiologia , Corpo Vítreo/metabolismo
13.
J Mol Cell Cardiol ; 131: 82-90, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31015037

RESUMO

Diabetes is associated with cardiac inflammation and impaired endothelium-dependent coronary vasodilation, but molecular mechanisms involved in this dysfunction remain unclear. We examined contributions of inflammatory molecules lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), stress-activated kinases (c-Jun N-terminal kinase [JNK] and p38), arginase, and reactive oxygen species to coronary arteriolar dysfunction in a porcine model of type 1 diabetes. Coronary arterioles were isolated from streptozocin-induced diabetic pigs and control pigs for vasoreactivity and molecular/biochemical studies. Endothelium-dependent nitric oxide (NO)-mediated vasodilation to serotonin was diminished after 2 weeks of diabetes, without altering endothelium-independent vasodilation to sodium nitroprusside. Superoxide scavenger TEMPOL, NO precursor L-arginine, arginase inhibitor nor-NOHA, anti-LOX-1 antibody or JNK inhibitors SP600125 and BI-78D3 improved dilation of diabetic vessels to serotonin. However, hydrogen peroxide scavenger catalase, anti-IgG antibody or p38 kinase inhibitor SB203580 had no effect. Combined inhibition of arginase and superoxide levels did not further improve vasodilation. Arginase-I mRNA expression, LOX-1 and JNK protein expression, and superoxide levels were elevated in diabetic arterioles. In conclusion, sequential activation of LOX-1, JNK, and L-arginine consuming enzyme arginase-I in diabetes elicits superoxide-dependent oxidative stress and impairs endothelial NO-mediated dilation in coronary arterioles. Therapeutic targeting of these adverse vascular molecules may improve coronary arteriolar function during diabetes.


Assuntos
Arginase/metabolismo , Arteríolas/metabolismo , Vasos Coronários/metabolismo , Diabetes Mellitus Experimental/complicações , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Antracenos/farmacologia , Arginase/genética , Arteríolas/patologia , Vasos Coronários/patologia , Óxidos N-Cíclicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Dioxanos/farmacologia , Imidazóis/farmacologia , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Óxido Nítrico/farmacologia , Piridinas/farmacologia , Receptores Depuradores Classe E/genética , Serotonina/farmacologia , Marcadores de Spin , Suínos , Tiazóis/farmacologia , Vasodilatação/efeitos dos fármacos
14.
Microcirculation ; 26(6): e12527, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30597676

RESUMO

OBJECTIVE: This study was undertaken to characterize structural and pharmacological properties of the pig popliteal artery in order to develop a novel system for the examination of lower limb blood flow regulation in a variety of cardiovascular pathologies, such as diabetes-induced peripheral artery disease. METHODS: Popliteal arteries were isolated from streptozocin-induced diabetic pigs or age-matched saline-injected control pigs for morphological study using transmission electron microscopy and for examination of vasoreactivity to pharmacological agents using wire myography. RESULTS: Transmission electron microscopy of the porcine popliteal artery wall revealed the presence of endothelial cell-smooth muscle cell interactions (myoendothelial junctions) and smooth muscle cell-smooth muscle cell interactions, for which we have coined the term "myo-myo junctions." These myo-myo junctions were shown to feature plaques indicative of connexin expression. Further, the pig popliteal artery was highly responsive to a variety of vasoconstrictors including norepinephrine, phenylephrine, and U46619, and vasodilators including acetylcholine, adenosine 5'-[ß-thio] diphosphate, and bradykinin. Finally, 2 weeks after streptozocin-induced diabetes, the normalized vasoconstriction of the pig popliteal artery to norepinephrine was unaltered compared to control. CONCLUSIONS: The pig popliteal artery displays structural and pharmacological properties that might prove useful in future studies of diabetes-associated peripheral artery disease and other lower limb cardiovascular diseases.


Assuntos
Angiopatias Diabéticas , Extremidade Inferior/irrigação sanguínea , Doença Arterial Periférica , Artéria Poplítea , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/ultraestrutura , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Artéria Poplítea/metabolismo , Artéria Poplítea/fisiopatologia , Artéria Poplítea/ultraestrutura , Suínos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
15.
Data Brief ; 21: 1019-1025, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30450393

RESUMO

The data presented in this article are related to the research paper entitled "Correlation of Spectral Domain Optical Coherence Tomography with Histology and Electron Microscopy in the Porcine Retina" (Xie et al., 2018) [2]. This research data highlights our technique for retinal fundus image acquisition during spectral domain optical coherence tomography (SD-OCT) in a large animal model. Low and high magnification electron micrographs are included to demonstrate the ultrastructural features of the porcine retina. Data on horizontal tissue shrinkage during processing of the porcine retina are presented.

16.
Invest Ophthalmol Vis Sci ; 59(12): 5167-5175, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30372743

RESUMO

Purpose: Endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in retinal venous pathologies such as diabetic retinopathy and retinal vein occlusion. However, underlying mechanisms contributing to venular constriction remain unknown. Thus, we examined the roles of ET-1 receptors, extracellular calcium (Ca2+), L-type voltage-operated calcium channels (L-VOCCs), Rho kinase (ROCK), and protein kinase C (PKC) in ET-1-induced constriction of retinal venules. Methods: Porcine retinal venules were isolated and pressurized for vasoreactivity study using videomicroscopic techniques. Protein and mRNA were analyzed using molecular tools. Results: Retinal venules developed basal tone and constricted concentration-dependently to ET-1. The ETA receptor (ETAR) antagonist BQ123 abolished venular constriction to ET-1, but ETB receptor (ETBR) antagonist BQ788 had no effect on vasoconstriction. The ETBR agonist sarafotoxin S6c did not elicit vasomotor activity. In the absence of extracellular Ca2+, venules lost basal tone and ET-1-induced constriction was nearly abolished. Although L-VOCC inhibitor nifedipine also reduced basal tone and blocked vasoconstriction to L-VOCC activator Bay K8644, constriction of venules to ET-1 remained. The ROCK inhibitor H-1152 but not PKC inhibitor Gö 6983 prevented ET-1-induced vasoconstriction. Protein and mRNA expressions of ETARs and ETBRs, along with ROCK1 and ROCK2 isoforms, were detected in retinal venules. Conclusions: Extracellular Ca2+ entry via L-VOCCs is essential for developing and maintaining basal tone of porcine retinal venules. ET-1 causes significant constriction of retinal venules by activating ETARs and extracellular Ca2+ entry independent of L-VOCCs. Activation of ROCK signaling, without involvement of PKC, appears to mediate venular constriction to ET-1 in the porcine retina.


Assuntos
Cálcio/metabolismo , Endotelina-1/farmacologia , Receptor de Endotelina A/metabolismo , Veia Retiniana/fisiologia , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Animais , Western Blotting , Canais de Cálcio Tipo L/metabolismo , Antagonistas do Receptor de Endotelina B/farmacologia , Antagonistas dos Receptores de Endotelina/farmacologia , Feminino , Masculino , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Piperidinas/farmacologia , Proteína Quinase C/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Endotelina A/genética , Sus scrofa , Vênulas/fisiologia
17.
Exp Eye Res ; 177: 181-190, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120928

RESUMO

Spectral domain optical coherence tomography (SD-OCT) is used as a non-invasive tool for retinal morphological assessment in vivo. Information on the correlation of SD-OCT with retinal histology in the porcine retina, a model resembling the human retina, is limited. Herein, we correlated the hypo- and hyper-reflective bands on SD-OCT with histology of the lamellar architecture and cellular constituents of the porcine retina. SD-OCT images were acquired with the Heidelberg Spectralis HRA + OCT. Histological analysis was performed using epoxy resin embedded tissue and transmission electron microscopy. Photomicrographs from the histologic sections were linearly scaled to correct for tissue shrinkage and correlated with SD-OCT images. SD-OCT images correlated well with histomorphometric data. A hyper-reflective band in the mid-to-outer inner nuclear layer correlated with the presence of abundant mitochondria in horizontal cell processes and adjacent bipolar cells. A concentration of cone nuclei corresponded to a relative hypo-reflective band in the outer portion of the outer nuclear layer. The presence of 3 hyper-reflective bands in the outer retina corresponded to: 1) the external limiting membrane; 2) the cone and rod ellipsoid zones; and 3) the interdigitation zone of photoreceptor outer segments/retinal pigment epithelium (RPE) apical cell processes and the RPE. These correlative and normative SD-OCT data may be employed to characterize and assess the in vivo histologic changes in retinal vascular and degenerative diseases and the responses to novel therapeutic interventions in this large animal model.


Assuntos
Técnicas Histológicas , Microscopia Eletrônica , Imagem Óptica/métodos , Retina/anatomia & histologia , Tomografia de Coerência Óptica/métodos , Animais , Suínos
18.
Invest Ophthalmol Vis Sci ; 59(2): 1125-1133, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490350

RESUMO

Purpose: The purpose of this study was to investigate the impact of stanniocalcin-1 (STC-1), a photoreceptor-protective glycoprotein, on the development of choroidal neovascularization (CNV) in relation to VEGF and its main receptor (VEGFR2) expression after laser injury. Methods: In rats, CNV was induced by laser photocoagulation in both eyes, followed by intravitreal injection of STC-1 in the right eye and vehicle or denatured STC-1 injection in the left eye as control. Two weeks after laser injury, fundus autofluorescence (FAF) imaging and fundus fluorescein angiography (FFA) were performed. Fluorescein leakage from CNV was graded using a defined scale system. The size of CNV was quantified with spectral domain optical coherence tomography (SD-OCT), fluorescein-labeled choroid-sclera flat mounts, and hematoxylin-eosin staining. Protein expressions were evaluated by Western blot. Results: Photocoagulation produced a well-circumscribed area of CNV. With STC-1 treatment, CNV lesions assessed by FAF were increased by 50% in both intensity and area. The CNV lesions were also increased with SD-OCT, flat-mount, and histologic analyses. FFA disclosed enhanced fluorescein leakage in CNV lesions in STC-1 treated eyes. The STC-1 protein was detected in the choroidal tissue and its level was increased with CNV lesions in correlation with VEGF and VEGFR2 expressions. Intravitreal administration of STC-1 significantly increased choroidal expression of both VEGF and VEGFR2 proteins. Conclusions: Chorodial tissue expresses STC-1, which seemingly acts as a stress response protein by enhancing pathological new blood vessel growth in laser-induced CNV. It is likely that STC-1 promotes CNV development via VEGF signaling.


Assuntos
Corioide/efeitos dos fármacos , Neovascularização de Coroide/etiologia , Modelos Animais de Doenças , Glicoproteínas/farmacologia , Animais , Western Blotting , Permeabilidade Capilar , Corioide/metabolismo , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Angiofluoresceinografia , Glicoproteínas/metabolismo , Injeções Intravítreas , Fotocoagulação a Laser , Ratos , Ratos Endogâmicos BN , Proteínas Recombinantes/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Am J Pathol ; 188(3): 818-827, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29309745

RESUMO

Hypertension is associated with numerous diseases, but its direct impact on the ocular circulation and neuroretinal function remains unclear. Herein, mouse eyes were challenged with different levels of hemodynamic insult via transverse aortic coarctation, which increased blood pressure and flow velocity by 50% and 40%, respectively, in the right common carotid artery, and reduced those parameters by 30% and 40%, respectively, in the left common carotid artery. Blood velocity in the right central retinal artery gradually increased up to 40% at 4 weeks of transverse aortic coarctation, and the velocity in the left central retinal artery gradually decreased by 20%. The fundus and retinal architecture were unaltered by hemodynamic changes. Endothelium-dependent vasodilations to acetylcholine and adenosine were reduced only in right (hypertensive) ophthalmic arteries. Increased cellularity in the nerve fiber/ganglion cell layers, enhanced glial fibrillary acidic protein expression, and elevated superoxide level were found only in hypertensive retinas. The electroretinogram showed decreased scotopic b-waves in the hypertensive eyes and decreased scotopic oscillatory potentials in both hypertensive and hypotensive eyes. In conclusion, hypertension sustained for 4 weeks causes ophthalmic vascular dysfunction, retinal glial cell activation, oxidative stress, and neuroretinal impairment. Although ophthalmic vasoregulation is insensitive to hypotensive insult, the ocular hypoperfusion causes neuroretinal dysfunction.


Assuntos
Artéria Oftálmica/fisiopatologia , Retina/fisiopatologia , Vasos Retinianos/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Eletrorretinografia , Hemodinâmica/fisiologia , Masculino , Camundongos , Fluxo Sanguíneo Regional/fisiologia
20.
Cardiovasc Res ; 113(11): 1329-1337, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575410

RESUMO

AIMS: Hypertensive cardiac hypertrophy is associated with reduced coronary flow reserve, but its impact on coronary flow regulation and vasomotor function remains incompletely understood and requires further investigation. METHODS AND RESULTS: Left ventricular hypertrophy was induced in mice by transverse aortic coarctation (TAC) for 4 weeks. The left coronary artery blood velocity (LCABV) and myocardium lactate level were measured following the metabolic activation by isoproterenol. Septal coronary arterioles were isolated and pressurized for functional studies. In TAC mice, the heart-to-body weight ratio was increased by 45%, and cardiac fractional shortening and LCABV were decreased by 51 and 14%, respectively. The resting myocardial lactate level was 43% higher in TAC mice. Isoproterenol (5 µg/g, i.p.) increased heart rate by 20% in both groups of animals, but the corresponding increase in LCABV was not observed in TAC mice. The ventricular hypertrophy was associated with elevation of myocardial endothelin-1 (ET-1), increased vascular expression of rho-kinases (ROCKs), and increased superoxide production in the myocardium and vasculature. In coronary arterioles from TAC mice, the endothelial nitric oxide (NO)-mediated dilation to acetylcholine (ACh) was reversed to vasoconstriction and the vasoconstriction to ET-1 was augmented. Inhibition of ROCK by H-1152 alleviated oxidative stress and abolished enhanced vasoconstriction to ET-1. Both H-1152 and superoxide scavenger Tempol abolished coronary arteriolar constriction to ACh in a manner sensitive to NO synthase blocker NG-nitro-L-arginine methyl ester. CONCLUSIONS: Myocardial hypertrophy induced by pressure overload leads to cardiac and coronary microvascular dysfunction and ischaemia possibly due to oxidative stress, enhanced vasoconstriction to ET-1 and compromised endothelial NO function via elevated ROCK signalling.


Assuntos
Cardiomegalia/metabolismo , Endotelina-1/metabolismo , Hipertensão/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Cardiomegalia/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA