Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 58(7): 4173-4189, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860361

RESUMO

Hexavalent uranium is ubiquitous in the environment. In view of the chemical and radiochemical toxicity of uranium(VI), a good knowledge of its possible interactions in the environment is crucial. The aim of this work was to identify typical binding and sorption characteristics of uranium(VI) with both the pure bovine milk protein ß-casein and diverse related protein mixtures (caseins, whey proteins). For comparison, selected model peptides representing the amino acid sequence 13-16 of ß-casein and dephosphorylated ß-casein were also studied. Complexation studies using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy revealed that the phosphoryl-containing proteins form uranium(VI) complexes of higher stability than the structure-analog phosphoryl-free proteins. That is in agreement with the sorption experiments showing a significantly higher affinity of caseins toward uranium(VI) in comparison to whey proteins. On the other hand, the total sorption capacity of caseins is lower than that of whey proteins. The discussed binding behavior of milk proteins to uranium(VI) might open up interesting perspectives for sustainable techniques of uranium(VI) removal from aqueous solutions. This was further demonstrated by batch experiments on the removal of uranium(VI) from mineral water samples.


Assuntos
Caseínas/metabolismo , Peptídeos/metabolismo , Urânio/metabolismo , Proteínas do Soro do Leite/metabolismo , Adsorção , Animais , Caseínas/química , Bovinos , Complexos de Coordenação/química , Estrutura Molecular , Nascentes Naturais/química , Peptídeos/química , Ligação Proteica , Urânio/química , Proteínas do Soro do Leite/química
2.
Inorg Chem ; 50(4): 1498-505, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21268657

RESUMO

The metal complexation properties of the naturally occurring Maillard reaction product isomaltol HL(2) are investigated by measurement of its stability constants with copper(II), zinc(II), and iron(III) using potentiometric pH titrations in water, by structural and magnetic characterization of its crystalline complex, [Cu(L(2))(2)]·8H(2)O, and by density functional theory calculations. Strong complexation is observed to form the bis(isomaltolato)copper(II) complex incorporating copper in a typical (pseudo-)square-planar geometry. In the solid state, extensive intra- and intermolecular hydrogen bonding involving all three oxygen functions per ligand assembles the complexes into ribbons that interact to form two-dimensional arrays; further hydrogen bonds and π interactions between the furan moiety of the anionic ligands and adjacent copper(II) centers connect the complexes in the third dimension, leading to a compact polymeric three-dimensional (3D) arrangement. The latter interactions involving copper(II), which represent an underappreciated aspect of copper(II) chemistry, are compared to similar interactions present in other copper(II) 3D structures showing interactions with benzene molecules; the results indicate that dispersion forces dominate in the π system to chelated copper(II) ion interactions.


Assuntos
Cobre/química , Furanos/química , Reação de Maillard , Compostos Organometálicos/química , Algoritmos , Benzeno/química , Cátions Bivalentes , Cristalografia por Raios X , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro/química , Magnetismo , Potenciometria , Água/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA