Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sci Rep ; 14(1): 6095, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480804

RESUMO

In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microbiota/genética , Microbioma Gastrointestinal/genética , Genômica , Formiatos
2.
Front Immunol ; 15: 1328212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384462

RESUMO

Background: Anaphylaxis manifests as a severe immediate-type hypersensitivity reaction initiated through the immunological activation of target B-cells by allergens, leading to the release of mediators. However, the well-known underlying pathological mechanisms do not fully explain the whole variety of clinical and immunological presentations. We performed a systemic review of proteomic and metabolomic studies and analyzed the extracted data to improve our understanding and identify potential new biomarkers of anaphylaxis. Methods: Proteomic and metabolomic studies in both human subjects and experimental models were extracted and selected through a systematic search conducted on databases such as PubMed, Scopus, and Web of Science, up to May 2023. Results: Of 137 retrieved publications, we considered 12 for further analysis, including seven on proteome analysis and five on metabolome analysis. A meta-analysis of the four human studies identified 118 proteins with varying expression levels in at least two studies. Beside established pathways of mast cells and basophil activation, functional analysis of proteomic data revealed a significant enrichment of biological processes related to neutrophil activation and platelet degranulation and metabolic pathways of arachidonic acid and icosatetraenoic acid. The pathway analysis highlighted also the involvement of neutrophil degranulation, and platelet activation. Metabolome analysis across different models showed 13 common metabolites, including arachidonic acid, tryptophan and lysoPC(18:0) lysophosphatidylcholines. Conclusion: Our review highlights the underestimated role of neutrophils and platelets in the pathological mechanisms of anaphylactic reactions. These findings, derived from a limited number of publications, necessitate confirmation through human studies with larger sample sizes and could contribute to the development of new biomarkers for anaphylaxis. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024506246.


Assuntos
Anafilaxia , Humanos , Ácido Araquidônico , Proteômica , Alérgenos , Biomarcadores
3.
Metabolism ; 150: 155738, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981189

RESUMO

Inborn errors of metabolism (IEMs) are a group of more than 1000 inherited diseases that are individually rare but have a cumulative global prevalence of 50 per 100,000 births. Recently, it has been recognized that like common diseases, patients with rare diseases can greatly vary in the manifestation and severity of symptoms. Here, we review omics-driven approaches that enable an integrated, holistic view of metabolic phenotypes in IEM patients. We focus on applications of Constraint-based Reconstruction and Analysis (COBRA), a widely used mechanistic systems biology approach, to model the effects of inherited diseases. Moreover, we review evidence that the gut microbiome is also altered in rare diseases. Finally, we outline an approach using personalized metabolic models of IEM patients for the prediction of biomarkers and tailored therapeutic or dietary interventions. Such applications could pave the way towards personalized medicine not just for common, but also for rare diseases.


Assuntos
Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/genética , Doenças Raras/genética , Medicina de Precisão , Fenótipo , Análise de Sistemas
4.
Cell Rep Methods ; 3(10): 100615, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37848031

RESUMO

Understanding the effects of the microbiome on the host's metabolism is core to enlightening the role of the microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association pattern analyses, combining microbiome metabolome association studies with in silico constraint-based community modeling. Via theoretical dissection of confounding and causal paths, we show that in silico in vivo association pattern analyses allow for causal inference on microbiome-metabolome relations in observational data. We justify the corresponding theoretical criterion by structural equation modeling of host-microbiome systems, integrating deterministic microbiome community modeling into population statistics approaches. We show the feasibility of our approach on a published multi-omics dataset (n = 347), demonstrating causal microbiome-metabolite relations for 26 out of 54 fecal metabolites. In summary, we generate a promising approach for causal inference in metabolic host-microbiome interactions by integrating hypothesis-free screening association studies with knowledge-based in silico modeling.


Assuntos
Microbioma Gastrointestinal , Microbiota , Metaboloma , Simulação por Computador , Fezes
5.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873072

RESUMO

Computational modelling of microbiome metabolism has proved instrumental to catalyse our understanding of diet-host-microbiome-disease interactions through the interrogation of mechanistic, strain- and molecule-resolved metabolic models. We present APOLLO, a resource of 247,092 human microbial genome-scale metabolic reconstructions spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups, and five body sites. We explored the metabolic potential of the reconstructed strains and developed a machine learning classifier able to predict with high accuracy the taxonomic strain assignments. We also built 14,451 sample-specific microbial community models, which could be stratified by body site, age, and disease states. Finally, we predicted faecal metabolites enriched or depleted in gut microbiomes of people with Crohn's disease, Parkinson disease, and undernourished children. APOLLO is compatible with the human whole-body models, and thus, provide unprecedented opportunities for systems-level modelling of personalised host-microbiome co-metabolism. APOLLO will be freely available under https://www.vmh.life/.

6.
Res Sq ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37720019

RESUMO

In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilized whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalized models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.

8.
PLoS Comput Biol ; 19(8): e1011363, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578975

RESUMO

Harnessing the power of microbial consortia is integral to a diverse range of sectors, from healthcare to biotechnology to environmental remediation. To fully realize this potential, it is critical to understand the mechanisms behind the interactions that structure microbial consortia and determine their functions. Constraint-based reconstruction and analysis (COBRA) approaches, employing genome-scale metabolic models (GEMs), have emerged as the state-of-the-art tool to simulate the behavior of microbial communities from their constituent genomes. In the last decade, many tools have been developed that use COBRA approaches to simulate multi-species consortia, under either steady-state, dynamic, or spatiotemporally varying scenarios. Yet, these tools have not been systematically evaluated regarding their software quality, most suitable application, and predictive power. Hence, it is uncertain which tools users should apply to their system and what are the most urgent directions that developers should take in the future to improve existing capacities. This study conducted a systematic evaluation of COBRA-based tools for microbial communities using datasets from two-member communities as test cases. First, we performed a qualitative assessment in which we evaluated 24 published tools based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability) features essential for software quality. Next, we quantitatively tested the predictions in a subset of 14 of these tools against experimental data from three different case studies: a) syngas fermentation by C. autoethanogenum and C. kluyveri for the static tools, b) glucose/xylose fermentation with engineered E. coli and S. cerevisiae for the dynamic tools, and c) a Petri dish of E. coli and S. enterica for tools incorporating spatiotemporal variation. Our results show varying performance levels of the best qualitatively assessed tools when examining the different categories of tools. The differences in the mathematical formulation of the approaches and their relation to the results were also discussed. Ultimately, we provide recommendations for refining future GEM microbial modeling tools.


Assuntos
Escherichia coli , Consórcios Microbianos , Consórcios Microbianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae , Genoma , Software
9.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37495887

RESUMO

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Assuntos
Depressão , Espectrometria de Massas em Tandem , Humanos , Depressão/metabolismo , Dieta , Metaboloma/genética , Vitamina A/metabolismo , Hipuratos , Metabolômica/métodos
10.
Gut Microbes ; 15(1): 2226921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37438876

RESUMO

We report the first use of constraint-based microbial community modeling on a single individual with episodic inflammation of the gastrointestinal tract, who has a well documented set of colonic inflammatory biomarkers, as well as metagenomically-sequenced fecal time series covering seven dates over 16 months. Between the first two time steps the individual was treated with both steroids and antibiotics. Our methodology enabled us to identify numerous time-correlated microbial species and metabolites. We found that the individual's dynamical microbial ecology in the disease state led to time-varying in silico overproduction, compared to healthy controls, of more than 24 biologically important metabolites, including methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin, histamine, and tryptamine. The microbe-metabolite contribution analysis revealed that some Dialister species changed metabolic pathways according to the inflammation phases. At the first time point, characterized by the highest levels of serum (complex reactive protein) and fecal (calprotectin) inflammation biomarkers, they produced L-serine or formate. The production of the compounds, through a cascade effect, was mediated by the interaction with pathogenic Escherichia coli strains and Desulfovibrio piger. We integrated the microbial community metabolic models of each time point with a male whole-body, organ-resolved model of human metabolism to track the metabolic consequences of dysbiosis at different body sites. The presence of D. piger in the gut microbiome influenced the sulfur metabolism with a domino effect affecting the liver. These results revealed large longitudinal variations in an individual's gut microbiome ecology and metabolite production, potentially impacting other organs in the body. Future simulations with more time points from an individual could permit us to assess how external drivers, such as diet change or medical interventions, drive microbial community dynamics.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Inflamação , Fígado , Antibacterianos , Escherichia coli
11.
PLoS Biol ; 21(5): e3002125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205710

RESUMO

Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Biologia de Sistemas , Ecossistema , Actinobacteria/metabolismo
12.
Nat Microbiol ; 8(2): 246-259, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635575

RESUMO

Spontaneous preterm birth (sPTB) is a leading cause of maternal and neonatal morbidity and mortality, yet its prevention and early risk stratification are limited. Previous investigations have suggested that vaginal microbes and metabolites may be implicated in sPTB. Here we performed untargeted metabolomics on 232 second-trimester vaginal samples, 80 from pregnancies ending preterm. We find multiple associations between vaginal metabolites and subsequent preterm birth, and propose that several of these metabolites, including diethanolamine and ethyl glucoside, are exogenous. We observe associations between the metabolome and microbiome profiles previously obtained using 16S ribosomal RNA amplicon sequencing, including correlations between bacteria considered suboptimal, such as Gardnerella vaginalis, and metabolites enriched in term pregnancies, such as tyramine. We investigate these associations using metabolic models. We use machine learning models to predict sPTB risk from metabolite levels, weeks to months before birth, with good accuracy (area under receiver operating characteristic curve of 0.78). These models, which we validate using two external cohorts, are more accurate than microbiome-based and maternal covariates-based models (area under receiver operating characteristic curve of 0.55-0.59). Our results demonstrate the potential of vaginal metabolites as early biomarkers of sPTB and highlight exogenous exposures as potential risk factors for prematurity.


Assuntos
Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/metabolismo , Nascimento Prematuro/microbiologia , Nascimento Prematuro/prevenção & controle , Xenobióticos/metabolismo , Vagina/microbiologia , Recém-Nascido Prematuro , Metaboloma
13.
Nat Biotechnol ; 41(9): 1320-1331, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36658342

RESUMO

The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Medicina de Precisão , Genoma , Genômica , Microbioma Gastrointestinal/genética
14.
Metabolites ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448495

RESUMO

Microbial metabolites measured using NMR may serve as markers for physiological or pathological host-microbe interactions and possibly mediate the beneficial effects of microbiome diversity. Yet, comprehensive analyses of gut microbiome data and the urine NMR metabolome from large general population cohorts are missing. Here, we report the associations between gut microbiota abundances or metrics of alpha diversity, quantified from stool samples using 16S rRNA gene sequencing, with targeted urine NMR metabolites measures from 951 participants of the Study of Health in Pomerania (SHIP). We detected significant genus-metabolite associations for hippurate, succinate, indoxyl sulfate, and formate. Moreover, while replicating the previously reported association between hippurate and measures of alpha diversity, we identified formate and 4-hydroxyphenylacetate as novel markers of gut microbiome alpha diversity. Next, we predicted the urinary concentrations of each metabolite using genus abundances via an elastic net regression methodology. We found profound associations of the microbiome-based hippurate prediction score with markers of liver injury, inflammation, and metabolic health. Moreover, the microbiome-based prediction score for hippurate completely mediated the clinical association pattern of microbial diversity, hinting at a role of benzoate metabolism underlying the positive associations between high alpha diversity and healthy states. In conclusion, large-scale NMR urine metabolomics delivered novel insights into metabolic host-microbiome interactions, identifying pathways of benzoate metabolism as relevant candidates mediating the beneficial health effects of high microbial alpha diversity.

15.
Nat Metab ; 4(4): 458-475, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437333

RESUMO

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Bactérias , Neoplasias Colorretais/metabolismo , Formiatos , Fusobacterium nucleatum , Humanos , Camundongos , Microambiente Tumoral
16.
Bioinformatics ; 38(8): 2367-2368, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35157025

RESUMO

MOTIVATION: Constraint-Based Reconstruction and Analysis (COBRA) is a widely used approach for the interrogation and stratification of microbiome samples, yet applications to large-scale cohorts are hampered by limited scalability and efficiency of simulations. RESULTS: We substantially improved the computation speed and scalability of a previous implementation for the construction and interrogation of personalized constraint-based microbiome models as well as implemented additional functionalities for analysis and visualization. AVAILABILITY AND IMPLEMENTATION: Microbiome Modelling Toolbox and tutorials are freely available as part of the COBRA Toolbox at https://git.io/microbiomeModelingToolbox.


Assuntos
Microbiota , Software , Redes e Vias Metabólicas
17.
Bioinformatics ; 37(21): 3974-3975, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34473240

RESUMO

MOTIVATION: Manual curation of genome-scale reconstructions is laborious, yet existing automated curation tools do not typically take species-specific experimental and curated genomic data into account. RESULTS: We developed Data-drivEn METabolic nEtwork Refinement (DEMETER), a Constraint-Based Reconstruction and Analysis (COBRA) Toolbox extension, which enables the efficient, simultaneous refinement of thousands of draft genome-scale reconstructions, while ensuring adherence to the quality standards in the field, agreement with available experimental data and refinement of pathways based on manually refined genome annotations. AVAILABILITY AND IMPLEMENTATION: DEMETER and tutorials are freely available at https://github.com/opencobra. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Software , Anotação de Sequência Molecular , Genoma , Genômica
18.
Annu Rev Microbiol ; 75: 199-222, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314593

RESUMO

The human microbiome plays an important role in human health and disease. Meta-omics analyses provide indispensable data for linking changes in microbiome composition and function to disease etiology. Yet, the lack of a mechanistic understanding of, e.g., microbiome-metabolome links hampers the translation of these findings into effective, novel therapeutics. Here, we propose metabolic modeling of microbial communities through constraint-based reconstruction and analysis (COBRA) as a complementary approach to meta-omics analyses. First, we highlight the importance of microbial metabolism in cardiometabolic diseases, inflammatory bowel disease, colorectal cancer, Alzheimer disease, and Parkinson disease. Next, we demonstrate that microbial community modeling can stratify patients and controls, mechanistically link microbes with fecal metabolites altered in disease, and identify host pathways affected by the microbiome. Finally, we outline our vision for COBRA modeling combined with meta-omics analyses and multivariate statistical analyses to inform and guide clinical trials, yield testable hypotheses, and ultimately propose novel dietary and therapeutic interventions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Medicina de Precisão
19.
Gut Microbes ; 13(1): 1-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057024

RESUMO

Characterizing the metabolic functions of the gut microbiome in health and disease is pivotal for translating alterations in microbial composition into clinical insights. Two major analysis paradigms have been used to explore the metabolic functions of the microbiome but not systematically integrated with each other: statistical screening approaches, such as metabolome-microbiome association studies, and computational approaches, such as constraint-based metabolic modeling. To combine the strengths of the two analysis paradigms, we herein introduce a set of theoretical concepts allowing for the population statistical treatment of constraint-based microbial community models. To demonstrate the utility of the theoretical framework, we applied it to a public metagenomic dataset consisting of 365 colorectal cancer (CRC) cases and 251 healthy controls, shining a light on the metabolic role of Fusobacterium spp. in CRC. We found that (1) glutarate production capability was significantly enriched in CRC microbiomes and mechanistically linked to lysine fermentation in Fusobacterium spp., (2) acetate and butyrate production potentials were lowered in CRC, and (3) Fusobacterium spp. presence had large negative ecological effects on community butyrate production in CRC cases and healthy controls. Validating the model predictions against fecal metabolomics, the in silico frameworks correctly predicted in vivo species metabolite correlations with high accuracy. In conclusion, highlighting the value of combining statistical association studies with in silico modeling, this study provides insights into the metabolic role of Fusobacterium spp. in the gut, while providing a proof of concept for the validity of constraint-based microbial community modeling.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Fezes/microbiologia , Fusobacterium/metabolismo , Microbioma Gastrointestinal , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Fezes/química , Feminino , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade
20.
NPJ Syst Biol Appl ; 7(1): 19, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958598

RESUMO

Inflammatory bowel diseases, such as Crohn's Disease, are characterised by an altered blood and faecal metabolome, and changes in gut microbiome composition. Here, we present an efficient, scalable, tractable systems biology framework to mechanistically link microbial strains and faecal metabolites. We retrieve strain-level relative abundances from metagenomics data from a cohort of paediatric Crohn's Disease patients with and without dysbiosis and healthy control children and construct and interrogate a personalised microbiome model for each sample. Predicted faecal secretion profiles and strain-level contributions to each metabolite vary broadly between healthy, dysbiotic, and non-dysbiotic microbiomes. The reduced microbial diversity in IBD results in reduced numbers of secreted metabolites, especially in sulfur metabolism. We demonstrate that increased potential to synthesise amino acids is linked to Proteobacteria contributions, in agreement with experimental observations. The established modelling framework yields testable hypotheses that may result in novel therapeutic and dietary interventions targeting the host-gut microbiome-diet axis.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Criança , Disbiose , Humanos , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA