RESUMO
Analysis of human mitochondrial DNA (mtDNA) variation plays an important role in forensic genetic investigations, especially in degraded biological samples and hair shafts. There are many issues of the mtDNA phylogeny that are of special interest to the forensic community, such as haplogroup classification or the post hoc investigation of potential errors in mtDNA datasets. We have analyzed >2200 mitogenomes of African ancestry with the aim of improving the known worldwide phylogeny. More than 300 new minor subclades were identified, and the Time to the Most Recent Common Ancestor (TMRCA) was estimated for each node of the phylogeny. Phylogeographic details are provided which might also be relevant to forensic genetics. The present study has special interest for forensic investigations because current analysis and interpretation of mtDNA casework rest on a solid worldwide phylogeny, as is evident from the role that phylogeny plays in popular resources in the field (e.g. PhyloTree), software (e.g. Haplogrep 2), and databases (e.g. EMPOP). Apart from this forensic genetic interest, we also highlight the impact of this research in anthropological studies, such as those related to the reconstruction of the transatlantic slave trade.
Assuntos
População Negra/genética , DNA Mitocondrial/genética , Filogenia , Haplótipos , Humanos , Análise de Sequência de DNARESUMO
BACKGROUND: Unraveling the ancestry of 'Afro-American' communities is hampered by the complex demographic processes that took place during the Transatlantic Slave Trade (TAST) and the (post-)colonization periods. 'Afro-Bolivians' from the subtropical Yungas valleys constitute small and isolated communities that live surrounded by the predominant Native American community of Bolivia. By genotyping >580,000 SNPs in two 'Afro-Bolivians', and comparing these genomic profiles with data compiled from more than 57 African groups and other reference ancestral populations (n = 1,161 in total), we aimed to disentangle the complex admixture processes undergone by 'Afro-Bolivians'. RESULTS: The data indicate that these two genomes constitute a complex mosaic of ancestries that is approximately 80 % of recent African origin; the remaining ~20 % being European and Native American. West-Central Africa contributed most of the African ancestry to 'Afro-Bolivians', and this component is related to populations living along the Atlantic coast (i.e. Senegal, Ghana, Nigeria). Using tract length distribution of genomic segments attributable to distinct ancestries, we could date the time of admixture in about 400 years ago. This time coincides with the maximum importation of slaves to Bolivia to compensate the diminishing indigenous labor force needed for the development of the National Mint of Potosí. CONCLUSIONS: Overall, the data indicate that the genome of 'Afro-Bolivians' was shaped by a complex process of admixture occurring in America among individuals originating in different West-Central African populations; their genomic mosaics received additional contributions of Europeans and local Native Americans (e.g. Aymaras).
Assuntos
Etnicidade/genética , Genética Populacional , Técnicas de Genotipagem , Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , Bolívia , Mapeamento Cromossômico , Genoma Humano , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
During the period of the Transatlantic Slave Trade (TAST) some enslaved Africans were forced to move to Upper Peru (nowadays Bolivia). At first they were sent to Potosí, but later to the tropical Yungas valley where the Spanish colonizers established a so-called "hacienda system" that was based on slave labor, including African-descendants. Due to their isolation, very little attention has been paid so far to 'Afro-Bolivian' communities either within the research field of TAST or in genetic population studies. In this study, a total of 105 individuals from the Yungas were sequenced for their mitochondrial DNA (mtDNA) control region, and mitogenomes were obtained for a selected subset of these samples. We also genotyped 46 Ancestry Informative Markers (AIM) in order to investigate continental ancestry at the autosomal level. In addition, Y-chromosome STR and SNP data for a subset of the same individuals was also available from the literature. The data indicate that the partitioning of mtDNA ancestry in the Yungas differs significantly from that in the rest of the country: 81% Native American, 18% African, and 1% European. Interestingly, the great majority of 'Afro-descendant' mtDNA haplotypes in the Yungas (84%) concentrates in the locality of Tocaña. This high proportion of African ancestry in the Tocaña is also manifested in the Y-chromosome (44%) and in the autosomes (56%). In sharp contrast with previous studies on the TAST, the ancestry of about 1/3 of the 'Afro-Bolivian' mtDNA haplotypes can be traced back to East and South East Africa, which may be at least partially explained by the Arab slave trade connected to the TAST.
Assuntos
População Negra/genética , Pessoas Escravizadas , Genética Populacional , Genômica , Bolívia , Cromossomos Humanos Y , DNA Mitocondrial/genética , Feminino , Variação Genética , Genoma Mitocondrial , Genômica/métodos , Haplótipos , Humanos , Mutação INDEL , Masculino , Anotação de Sequência Molecular , Filogenia , Filogeografia , Fatores SexuaisRESUMO
We have analyzed the specific male genetic component of 226 Bolivians recruited in five different regions ("departments"), La Paz, Cochabamba, Pando, Beni, and Santa Cruz. To evaluate the effect of geography on the distribution of genetic variability, the samples were also grouped into three main eco-geographical regions, namely, Andean, Sub-Andean, and Llanos. All the individuals were genotyped for 17 Y-STR and 32 Y-SNP markers. The average Y-chromosome Native American component in Bolivians is 28%, and it is mainly represented by haplogroup Q1a3a, while the average Y-chromosome European ancestry is 65%, and it is mainly represented by haplogroup R1b1-P25. The data indicate that there exists significant population sub-division in the country in terms of continental ancestry. Thus, the partition of ancestries in Llanos, Sub-Andean, and Andean regions is as follows (respectively): (i) Native American ancestry: 47%, 7%, and 19%, (ii) European ancestry: 46%, 86%, and 75%, and (iii) African ancestry: 7%, 7%, and 6%. The population sub-structure in the country is also well mirrored when inferred from an AMOVA analysis, indicating that among-population variance in the country reaches 9.74-11.15%. This suggests the convenience of using regional datasets for forensic applications in Bolivia, instead of using a global and single country database. By comparing the Y-chromosome patterns with those previously reported on the same individuals on autosomal SNPs and mitochondrial DNA (mtDNA), it becomes clear that Bolivians show a strong gender-bias.
Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Marcadores Genéticos , Bolívia , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo ÚnicoRESUMO
We have genotyped 46 Ancestry Informative Markers (AIMs) in two of the most populated areas in Bolivia, namely, La Paz (Andean region; n=105), and Chuquisaca (Sub-Andean region; n=73). Using different analytical tools, we inferred admixture proportions of these two American communities by comparing the genetic profiles with those publicly available from the CEPH (Centre d'Etude du Polymorphisme Humain) panel representing three main continental groups (Africa, Europe, and America). By way of simulations, we first evaluated the minimum sample size needed in order to obtain accurate estimates of ancestry proportions. The results indicated that sample sizes above 30 individuals could be large enough to estimate main continental ancestry proportions using the 46 AIMs panel. With the exception of a few individuals, the results also indicated that Bolivians showed a predominantly Native American ancestry with variable levels of European admixture. The proportions of ancestry were statistically different in La Paz and Chuquisaca: the Native American component was 86% and 77% (Mann-Whitney U-test: un-adjusted P-value=2.1×10(-5)), while the European ancestry was 13% and 21% (Mann-Whitney U-test: un-adjusted P-value=3.6×10(-5)), respectively. The African ancestry in Bolivians captured by the AIMs analyzed in the present study was below 2%. The inferred ancestry of Bolivians fits well with previous studies undertaken on haplotype data, indicating a major proportion of Native American lineages. The genetic differences observed in these two groups suggest that forensic genetic analysis should be better performed based on local databases built in the main Bolivian areas.
Assuntos
Indígenas Sul-Americanos/genética , População Branca/genética , População Negra/genética , Bolívia , Simulação por Computador , Impressões Digitais de DNA , Etnicidade/genética , Genética Forense/métodos , Genética Forense/estatística & dados numéricos , Genética Populacional , Humanos , Análise de Componente PrincipalRESUMO
Only a few genetic studies have been carried out to date in Bolivia. However, some of the most important (pre)historical enclaves of South America were located in these territories. Thus, the (sub)-Andean region of Bolivia was part of the Inca Empire, the largest state in Pre-Columbian America. We have genotyped the first hypervariable region (HVS-I) of 720 samples representing the main regions in Bolivia, and these data have been analyzed in the context of other pan-American samples (>19,000 HVS-I mtDNAs). Entire mtDNA genome sequencing was also undertaken on selected Native American lineages. Additionally, a panel of 46 Ancestry Informative Markers (AIMs) was genotyped in a sub-set of samples. The vast majority of the Bolivian mtDNAs (98.4%) were found to belong to the main Native American haplogroups (A: 14.3%, B: 52.6%, C: 21.9%, D: 9.6%), with little indication of sub-Saharan and/or European lineages; however, marked patterns of haplogroup frequencies between main regions exist (e.g. haplogroup B: Andean [71%], Sub-Andean [61%], Llanos [32%]). Analysis of entire genomes unraveled the phylogenetic characteristics of three Native haplogroups: the pan-American haplogroup B2b (originated â¼21.4 thousand years ago [kya]), A2ah (â¼5.2 kya), and B2o (â¼2.6 kya). The data suggest that B2b could have arisen in North California (an origin even in the north most region of the American continent cannot be disregarded), moved southward following the Pacific coastline and crossed Meso-America. Then, it most likely spread into South America following two routes: the Pacific path towards Peru and Bolivia (arriving here at about â¼15.2 kya), and the Amazonian route of Venezuela and Brazil southwards. In contrast to the mtDNA, Ancestry Informative Markers (AIMs) reveal a higher (although geographically variable) European introgression in Bolivians (25%). Bolivia shows a decreasing autosomal molecular diversity pattern along the longitudinal axis, from the Altiplano to the lowlands. Both autosomes and mtDNA revealed a low impact (1-2%) of a sub-Saharan component in Bolivians.