RESUMO
The ant genus Temnothorax is one of the most diverse in the Palearctic region, comprising several species with different life histories and uncertain taxonomic backgrounds. Socially parasitic Temnothorax ant species were typically described decades ago, primarily based on traditional morphological traits. In some aspects, these species have come back into the spotlight in recent years, necessitating a comprehensive taxonomic revision of the species of the genus. In this paper, we present a quantitative morphology-based taxonomic revision of the Temnothorax corsicus species group (formerly called Myrmoxenus genus) based on the analysis of 20 continuous morphometric traits collected from 394 worker and 19 traits from 473 gyne individuals belonging to 240 samples. Based on morphometric analyses, we propose junior synonymy for Temnothorax tamarae (Arnol'di, 1968) under T. ravouxi (André, 1896), and T. microcellatus (Soudek, 1925) is revived and is considered a senior synonym of T. menozzii (Finzi, 1924). Detailed descriptions, measurements, distribution, and host usage of all ten species are given. Dichotomous keys to workers, known gynes, and photographs of all species are presented.
Assuntos
Formigas , Animais , Feminino , Masculino , Formigas/classificaçãoRESUMO
Juvenile hormone is considered to be a master regulator of polyphenism in social insects. In the ant Cardiocondyla obscurior, whether a female egg develops into a queen or a worker is determined maternally and caste-specific differentiation occurs in embryos, so that queens and workers can be distinguished in a non-invasive manner from late embryogenesis onwards. This ant also exhibits two male morphs - winged and wingless males. Here, we used topical treatment with juvenile hormone III and its synthetic analogue methoprene, a method that influences caste determination and differentiation in some ant species, to investigate whether hormone manipulation affects the development and growth of male, queen- and worker-destined embryos and larvae. We found no effect of hormone treatment on female caste ratios or body sizes in any of the treated stages, even though individuals reacted to heightened hormone availability with increased expression of krüppel-homolog 1, a conserved JH first-response gene. In contrast, hormone treatment resulted in the emergence of significantly larger males, although male morph fate was not affected. These results show that in C. obscurior, maternal caste determination leads to irreversible and highly canalized caste-specific development and growth.
Assuntos
Formigas , Hormônios Juvenis , Metoprene , Animais , Formigas/efeitos dos fármacos , Formigas/fisiologia , Formigas/crescimento & desenvolvimento , Feminino , Masculino , Metoprene/farmacologia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Tamanho Corporal/efeitos dos fármacos , SesquiterpenosRESUMO
In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.
Assuntos
Formigas , Micoses , Animais , Formigas/fisiologia , Ingestão de Alimentos , Aminoácidos , CarboidratosRESUMO
Social insects, such as ants, are preferred host organisms of pathogens and parasites because colonies are densely populated, and the number of potential hosts is high in the same place and time. Within a colony, individuals are exposed differentially to risks according to their function and age. Thus, older individuals forage and are therefore the most exposed to infection, predation, or physical stress, while young workers mostly stay inside the sheltered nest being less exposed. Immune investment is considered to be dependent on an individual's age and pathogen pressure. Long-term exposure to a parasite could affect the immune activity of individuals in an intriguing way that interferes with the age-dependent decline in immunocompetence. However, there are only few cases in which such interferences can be studied. The myrmecopathogenic fungus Rickia wasmannii, which infects entire colonies without killing the workers, is a suitable candidate for such studies. We investigated the general immunocompetence of Myrmica scabrinodis ant workers associated with non-lethal fungal infection by measuring the levels of active phenoloxidase (PO) and total PO (PPO) (reflecting the amount of both active and inactive forms of the enzyme) in two age classes. The level of PO proved to be higher in infected workers than in uninfected ones, while the level of PPO increased with age but was not affected by infection. Overall, these results indicate that a long-term infection could go hand in hand with increased immune activity of ant workers, conferring them higher level of protection.
Assuntos
Formigas , Micoses , Parasitos , Animais , Formigas/microbiologia , Comportamento Predatório , Estresse FisiológicoRESUMO
Social insect queens and workers can engage in conflict over reproductive allocation when they have different fitness optima. Here, we show that queens have control over queen-worker caste allocation in the ant Cardiocondyla obscurior, a species in which workers lack reproductive organs. We describe crystalline deposits that distinguish castes from the egg stage onwards, providing the first report of a discrete trait that can be used to identify ant caste throughout pre-imaginal development. The comparison of queen and worker-destined eggs and larvae revealed size and weight differences in late development, but no discernible differences in traits that may be used in social interactions, including hair morphology and cuticular odours. In line with a lack of caste-specific traits, adult workers treated developing queens and workers indiscriminately. Together with previous studies demonstrating queen control over sex allocation, these results show that queens control reproductive allocation in C. obscurior and suggest that the fitness interests of colony members are aligned to optimize resource allocation in this ant.
Assuntos
Formigas , Animais , Larva , Fenótipo , ReproduçãoRESUMO
Many parasites interfere with the behaviour of their hosts. In social animals, such as ants, parasitic interference can cause changes on the level of the individual and also on the level of the society. The ant-parasitic fungus Rickia wasmannii influences the behaviour of Myrmica ants by expanding the host's nestmate recognition template, thereby increasing the chance of the colony accepting infected non-nestmates. Infected ants consistently show an increase of the alkane tricosane (n-C23) in their cuticular hydrocarbon profiles. Although experimental application of single compounds often elicits aggression towards manipulated ants, we hypothesized that the increase of n-C23 might underlie the facilitated acceptance of infected non-nestmates. To test this, we mimicked fungal infection in M. scabrinodis by applying synthetic n-C23 to fresh ant corpses and observed the reaction of infected and uninfected workers to control and manipulated corpses. Infected ants appeared to be more peaceful towards infected but not uninfected non-nestmates. Adding n-C23 to uninfected corpses resulted in reduced aggression in uninfected ants. This supports the hypothesis that n-C23 acts as a 'pacifying' signal. Our study indicates that parasitic interference with the nestmate discrimination of host ants might eventually change colony structure by increasing genetic heterogeneity in infected colonies.
Assuntos
Formigas , Micoses , Animais , Agressão , Hidrocarbonetos , CadáverRESUMO
Workers of the ant Cardiocondyla elegans drop female sexuals into the nest entrance of other colonies to promote outbreeding with unrelated, wingless males. Corroborating the results from previous years, we document that carrier and carried female sexuals are typically related and that the transfer initially occurs mostly from their joint natal colonies to unrelated colonies. Female sexuals mate multiply with up to seven genetically distinguishable males. Contrary to our expectation, the colony growth rate of multiple-mated and outbred female sexuals was lower than that of inbred or single-mated females, leading to the question of why female sexuals mate multiply at all. Despite the obvious costs, multiple mating might be a way for female sexuals to "pay rent" for hibernation in an alien nest. We argue that in addition to evade inbreeding depression from regular sibling mating over many generations, assisted dispersal might also be a strategy for minimizing the risk of losing all reproductive investment when nests are flooded in winter.
RESUMO
The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialized morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in nonparasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of coexpressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.
Assuntos
Formigas , Características de História de Vida , Animais , Formigas/genética , Abelhas/genética , Comportamento Animal , Evolução Biológica , Transcriptoma/genéticaRESUMO
BACKGROUND: Human activities, including changes in agricultural landscapes, often impact biodiversity through habitat fragmentation. This potentially reduces genetic exchange between previously connected populations. Using a combination of nuclear and mitochondrial markers, we investigated (i) genetic diversity and population structure at multiple spatial scales and (ii) colony genetic structure and queen mating frequency in the ant species Temnothorax nigriceps in a highly anthropized environment. RESULTS: Although the results highlighted genetic structure on a European spatial scale, they did not reveal an impact of fragmentation on a regional scale, and we did not observe any genetic population structure on a regional scale. Across all populations, regardless of their geographical location, colony structure suggested monogyny (a single queen per colony) and monandry (single mating). However, nestmates were more related than expected, indicating that large-scale dispersal does not fully prevent genetic isolation. CONCLUSIONS: Despite living in fragmented patches of habitat, populations of Temnothorax nigriceps are apparently genetically not isolated at a regional scale. However, large-scale dispersal alone does not prevent genetic isolation. The ecological requirements of T. nigriceps may explain their resilience to habitat fragmentation by allowing them to survive in very small patches of suitable habitat. The deeper investigation of the diversity of functional habitats for this species should allow to appreciate better the mechanisms permitting this species to overcome the negative impacts of fragmentation.
Assuntos
Formigas , Animais , Formigas/genética , Biodiversidade , Ecossistema , Genética Populacional , Atividades Humanas , HumanosRESUMO
Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.
Assuntos
Formigas , Animais , Filogenia , SimbioseRESUMO
A key hypothesis for the occurrence of senescence is the decrease in selection strength due to the decrease in the proportion of newborns from parents attaining an advanced age - the so-called selection shadow. Strikingly, queens of social insects have long lifespans and reproductive senescence seems to be negligible. By lifelong tracking of 99 Cardiocondyla obscurior (Formicidae: Myrmicinae) ant colonies, we find that queens shift to the production of sexuals in late life regardless of their absolute lifespan or the number of workers present. Furthermore, RNAseq analyses of old queens past their peak of reproductive performance showed the development of massive pathology while queens were still fertile, leading to rapid death. We conclude that the evolution of superorganismality is accompanied by 'continuusparity,' a life history strategy that is distinct from other iteroparous and semelparous strategies across the tree of life, in that it combines continuous reproduction with a fitness peak late in life.
Assuntos
Formigas , Características de História de Vida , Animais , Fertilidade , Humanos , Recém-Nascido , Longevidade , ReproduçãoRESUMO
The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts', potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.
Assuntos
Formigas , Receptores Odorantes , Animais , Formigas/genética , Comportamento Animal/fisiologia , Evolução Molecular , Receptores Odorantes/genética , Comportamento SocialRESUMO
Mating in ants often occurs on the wing during nuptial flights or on the ground when scattered female sexuals attract males by pheromones. In both scenarios, there is little opportunity for males to engage in prolonged aggressive competition or elaborate courtship displays. Male morphology is therefore adapted to locating female sexuals and mating, and it lacks specific weapons or other traits associated with courtship. In contrast, sexuals of the ant genus Cardiocondyla typically mate in their natal nests. As a consequence, in many species winged males have been replaced by wingless fighter or territorial males, which kill or expel rival males with their strong mandibles and show complex mating behavior. However, no wingless males are known from Cardiocondyla zoserka from West Africa, and instead, winged males have evolved a bizarre secondary sexual trait: uniquely shaped antennae with spoon-like tips that show heavily sculptured ventral surfaces with numerous invaginations. We here report on the courtship behavior of C. zoserka males and describe antennal glands with class 3 gland cells, which presumably secrete a close range sex pheromone. Antennal glands have not yet been found in males of other ant species, including a close relative of C. zoserka, suggesting that in ants with intranidal mating sexual selection can rapidly lead to highly divergent adaptations and the evolution of novel structures.
RESUMO
Reproductive manipulation by endosymbiotic Wolbachia can cause unequal inheritance, allowing the manipulator to spread and potentially impacting evolutionary dynamics in infected hosts. Tramp and invasive species are excellent models to study the dynamics of host-Wolbachia associations because introduced populations often diverge in their microbiomes after colonizing new habitats, resulting in infection polymorphisms between native and introduced populations. Ants are the most abundant group of insects on earth, and numerous ant species are classified as highly invasive. However, little is known about the role of Wolbachia in these ecologically dominant insects. Here, we provide the first description of reproductive manipulation by Wolbachia in an ant. We show that Old and New World populations of the cosmotropic tramp ant Cardiocondyla obscurior harbor distinct Wolbachia strains, and that only the Old World strain manipulates host reproduction by causing cytoplasmic incompatibility (CI) in hybrid crosses. By uncovering a symbiont-induced mechanism of reproductive isolation in a social insect, our study provides a novel perspective on the biology of tramp ants and introduces a new system for studying the evolutionary consequences of CI.
Assuntos
Formigas , Wolbachia , Animais , Formigas/genética , Evolução Biológica , Citoplasma , Reprodução , SimbioseRESUMO
Choosing the right mating partner is one of the most critical decisions in the life of a sexually reproducing organism and is the basis of sexual selection. This choice is usually assumed to be made by one or both of the sexual partners. Here, we describe a system in which a third party - the siblings - promote outbreeding by their sisters: workers of the tiny ant Cardiocondyla elegans carry female sexuals from their natal nest over several meters and drop them in the nest of another, unrelated colony to promote outbreeding with wingless, stationary males. Workers appear to choose particular recipient colonies into which they transfer numerous female sexuals. Assisted outbreeding and indirect female choice in the ant C. elegans are comparable to human matchmaking and suggest a hitherto unknown aspect of natural history - third party sexual selection. Our study highlights that research at the intersection between social evolution and reproductive biology might reveal surprising facets of animal behavior.
Assuntos
Formigas/fisiologia , Comportamento de Escolha/fisiologia , Reprodução , Comportamento Sexual Animal/fisiologia , Predomínio Social , Animais , Feminino , MasculinoRESUMO
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Assuntos
Envelhecimento/genética , Formigas/fisiologia , Abelhas/fisiologia , Fertilidade/genética , Isópteros/fisiologia , Transcriptoma/fisiologia , Animais , Formigas/genética , Abelhas/genética , Perfilação da Expressão Gênica , Isópteros/genética , Especificidade da EspécieRESUMO
Individual lifespans vary tremendously between and also within species, but the proximate and ultimate causes of different ageing speeds are still not well understood. Sociality appears to be associated with the evolution of greater longevity and probably also with a larger plasticity of the shape and pace of ageing. For example, reproductives of several termites and ants reach lifespans that surpass those of their non-reproductive nestmates by one or two decades. In this issue, 15 papers explore the interrelations between sociality and individual longevity in both, group-living vertebrates and social insects. Here, we briefly give an overview of the contents of the various contributions, including theoretical and comparative studies, and we explore the similarities and dissimilarities in proximate mechanisms underlying ageing among taxa, with particular emphasis on nutrient-sensing pathways and, in insects, juvenile hormone. These studies point to an underestimated role of more downstream processes. We highlight the need for reliable transcriptomic markers of ageing and a comprehensive ageing theory of social animals, which includes the reproductive potential of workers, and considers the fact that social insect queens reach maturity only after a prolonged period of producing non-reproductive workers. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Assuntos
Envelhecimento , Comportamento Social , Animais , HumanosRESUMO
The life-prolonging effects of antioxidants have long entered popular culture, but the scientific community still debates whether free radicals and the resulting oxidative stress negatively affect longevity. Social insects are intriguing models for analysing the relationship between oxidative stress and senescence because life histories differ vastly between long-lived reproductives and the genetically similar but short-lived workers. Here, we present the results of an experiment on the accumulation of oxidative damage to proteins, and a comparative analysis of the expression of 20 selected genes commonly involved in managing oxidative damage, across four species of social insects: a termite, two bees and an ant. Although the source of analysed tissue varied across the four species, our results suggest that oxidative stress is a significant factor in senescence and that its manifestation and antioxidant defenses differ among species, making it difficult to find general patterns. More detailed and controlled investigations on why responses to oxidative stress may differ across social species may lead to a better understanding of the relations between oxidative stress, antioxidants, social life history and senescence. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Assuntos
Envelhecimento , Antioxidantes/metabolismo , Formigas/fisiologia , Abelhas/fisiologia , Isópteros/fisiologia , Estresse Oxidativo , Animais , Especificidade da EspécieRESUMO
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Assuntos
Formigas/fisiologia , Abelhas/fisiologia , Características de História de Vida , Animais , Fertilidade , Aptidão Genética , LongevidadeRESUMO
Workers in many species of social insects are capable of laying unfertilized eggs, which can develop into haploid males. This causes a conflict about male parentage between queens and workers. In a few species, this may result in matricide, that is, workers kill the colony's queen. Queen killing has so far been observed mainly in multi-queen colonies or in annual species, when the queen's fecundity declines at the end of the reproductive period. Here, we report queen expulsion and matricide in a monogynous, monandrous ant with perennial societies. Workers were seen to aggressively expel both related and unrelated queens from their nest shortly after the end of hibernation. Queen expulsion and matricide led to a significant decrease in the number of workers and brood, but eventually increased the direct fitness of workers through significant male production. Long-term observations revealed a short lifespan of queens, while workers in orphaned colonies survived and produced male offspring over several years.