Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Med Image Anal ; 96: 103221, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824864

RESUMO

Image-guided surgery collocates patient-specific data with the physical environment to facilitate surgical decision making. Unfortunately, these guidance systems commonly become compromised by intraoperative soft-tissue deformations. Nonrigid image-to-physical registration methods have been proposed to compensate for deformations, but clinical utility requires compatibility of these techniques with data sparsity and temporal constraints in the operating room. While finite element models can be effective in sparse data scenarios, computation time remains a limitation to widespread deployment. This paper proposes a registration algorithm that uses regularized Kelvinlets, which are analytical solutions to linear elasticity in an infinite domain, to overcome these barriers. This algorithm is demonstrated and compared to finite element-based registration on two datasets: a phantom liver deformation dataset and an in vivo breast deformation dataset. The regularized Kelvinlets algorithm resulted in a significant reduction in computation time compared to the finite element method. Accuracy as evaluated by target registration error was comparable between methods. Average target registration errors were 4.6 ± 1.0 and 3.2 ± 0.8 mm on the liver dataset and 5.4 ± 1.4 and 6.4 ± 1.5 mm on the breast dataset for the regularized Kelvinlets and finite element method, respectively. Limitations of regularized Kelvinlets include the lack of organ-specific geometry and the assumptions of linear elasticity and infinitesimal strain. Despite limitations, this work demonstrates the generalizability of regularized Kelvinlets registration on two soft-tissue elastic organs. This method may improve and accelerate registration for image-guided surgery, and it shows the potential of using regularized Kelvinlets on medical imaging data.


Assuntos
Algoritmos , Análise de Elementos Finitos , Fígado , Imagens de Fantasmas , Humanos , Fígado/diagnóstico por imagem , Feminino , Cirurgia Assistida por Computador/métodos , Mama/diagnóstico por imagem , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade
2.
Cancer Res Commun ; 4(3): 617-633, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426815

RESUMO

Active surveillance (AS) is a suitable management option for newly diagnosed prostate cancer, which usually presents low to intermediate clinical risk. Patients enrolled in AS have their tumor monitored via longitudinal multiparametric MRI (mpMRI), PSA tests, and biopsies. Hence, treatment is prescribed when these tests identify progression to higher-risk prostate cancer. However, current AS protocols rely on detecting tumor progression through direct observation according to population-based monitoring strategies. This approach limits the design of patient-specific AS plans and may delay the detection of tumor progression. Here, we present a pilot study to address these issues by leveraging personalized computational predictions of prostate cancer growth. Our forecasts are obtained with a spatiotemporal biomechanistic model informed by patient-specific longitudinal mpMRI data (T2-weighted MRI and apparent diffusion coefficient maps from diffusion-weighted MRI). Our results show that our technology can represent and forecast the global tumor burden for individual patients, achieving concordance correlation coefficients from 0.93 to 0.99 across our cohort (n = 7). In addition, we identify a model-based biomarker of higher-risk prostate cancer: the mean proliferation activity of the tumor (P = 0.041). Using logistic regression, we construct a prostate cancer risk classifier based on this biomarker that achieves an area under the ROC curve of 0.83. We further show that coupling our tumor forecasts with this prostate cancer risk classifier enables the early identification of prostate cancer progression to higher-risk disease by more than 1 year. Thus, we posit that our predictive technology constitutes a promising clinical decision-making tool to design personalized AS plans for patients with prostate cancer. SIGNIFICANCE: Personalization of a biomechanistic model of prostate cancer with mpMRI data enables the prediction of tumor progression, thereby showing promise to guide clinical decision-making during AS for each individual patient.


Assuntos
Neoplasias da Próstata , Conduta Expectante , Masculino , Humanos , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Próstata/diagnóstico por imagem , Antígeno Prostático Específico
3.
J Med Imaging (Bellingham) ; 11(2): 025001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445222

RESUMO

Purpose: To study the difference between rigid registration and nonrigid registration using two forms of digitization (contact and noncontact) in human in vivo liver surgery. Approach: A Conoprobe device attachment and sterilization process was developed to enable prospective noncontact intraoperative acquisition of organ surface data in the operating room (OR). The noncontact Conoprobe digitization method was compared against stylus-based acquisition in the context of image-to-physical registration for image-guided surgical navigation. Data from n=10 patients undergoing liver resection were analyzed under an Institutional Review Board-approved study at Memorial Sloan Kettering Cancer Center. Organ surface coverage of each surface acquisition method was compared. Registration accuracies resulting from the acquisition techniques were compared for (1) rigid registration method (RRM), (2) model-based nonrigid registration method (NRM) using surface data only, and (3) NRM with one subsurface feature (vena cava) from tracked intraoperative ultrasound (NRM-VC). Novel vessel centerline and tumor targets were segmented and compared to their registered preoperative counterparts for accuracy validation. Results: Surface data coverage collected by stylus and Conoprobe were 24.6%±6.4% and 19.6%±5.0%, respectively. The average difference between stylus data and Conoprobe data using NRM was -1.05 mm and using NRM-VC was -1.42 mm, indicating the registrations to Conoprobe data performed worse than to stylus data with both NRM approaches. However, using the stylus and Conoprobe acquisition methods led to significant improvement of NRM-VC over RRM by average differences of 4.48 and 3.66 mm, respectively. Conclusion: The first use of a sterile-field amenable Conoprobe surface acquisition strategy in the OR is reported for open liver surgery. Under clinical conditions, the nonrigid registration significantly outperformed standard-of-care rigid registration, and acquisition by contact-based stylus and noncontact-based Conoprobe produced similar registration results. The accuracy benefits of noncontact surface acquisition with a Conoprobe are likely obscured by inferior data coverage and intrinsic noise within acquisition systems.

4.
IEEE Open J Eng Med Biol ; 5: 107-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445239

RESUMO

Emerging computational tools such as healthcare digital twin modeling are enabling the creation of patient-specific surgical planning, including microwave ablation to treat primary and secondary liver cancers. Healthcare digital twins (DTs) are anatomically one-to-one biophysical models constructed from structural, functional, and biomarker-based imaging data to simulate patient-specific therapies and guide clinical decision-making. In microwave ablation (MWA), tissue-specific factors including tissue perfusion, hepatic steatosis, and fibrosis affect therapeutic extent, but current thermal dosing guidelines do not account for these parameters. This study establishes an MR imaging framework to construct three-dimensional biophysical digital twins to predict ablation delivery in livers with 5 levels of fat content in the presence of a tumor. Four microwave antenna placement strategies were considered, and simulated microwave ablations were then performed using 915 MHz and 2450 MHz antennae in Tumor Naïve DTs (control), and Tumor Informed DTs at five grades of steatosis. Across the range of fatty liver steatosis grades, fat content was found to significantly increase ablation volumes by approximately 29-l42% in the Tumor Naïve and 55-60% in the Tumor Informed DTs in 915 MHz and 2450 MHz antenna simulations. The presence of tumor did not significantly affect ablation volumes within the same steatosis grade in 915 MHz simulations, but did significantly increase ablation volumes within mild-, moderate-, and high-fat steatosis grades in 2450 MHz simulations. An analysis of signed distance to agreement for placement strategies suggests that accounting for patient-specific tumor tissue properties significantly impacts ablation forecasting for the preoperative evaluation of ablation zone coverage.

5.
J Med Imaging (Bellingham) ; 11(1): 015001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38196401

RESUMO

Purpose: Computational methods for image-to-physical registration during surgical guidance frequently rely on sparse point clouds obtained over a limited region of the organ surface. However, soft tissue deformations complicate the ability to accurately infer anatomical alignments from sparse descriptors of the organ surface. The Image-to-Physical Liver Registration Sparse Data Challenge introduced at SPIE Medical Imaging 2019 seeks to characterize the performance of sparse data registration methods on a common dataset to benchmark and identify effective tactics and limitations that will continue to inform the evolution of image-to-physical registration algorithms. Approach: Three rigid and five deformable registration methods were contributed to the challenge. The deformable approaches consisted of two deep learning and three biomechanical boundary condition reconstruction methods. These algorithms were compared on a common dataset of 112 registration scenarios derived from a tissue-mimicking phantom with 159 subsurface validation targets. Target registration errors (TRE) were evaluated under varying conditions of data extent, target location, and measurement noise. Jacobian determinants and strain magnitudes were compared to assess displacement field consistency. Results: Rigid registration algorithms produced significant differences in TRE ranging from 3.8±2.4 mm to 7.7±4.5 mm, depending on the choice of technique. Two biomechanical methods yielded TRE of 3.1±1.8 mm and 3.3±1.9 mm, which outperformed optimal rigid registration of targets. These methods demonstrated good performance under varying degrees of surface data coverage and across all anatomical segments of the liver. Deep learning methods exhibited TRE ranging from 4.3±3.3 mm to 7.6±5.3 mm but are likely to improve with continued development. TRE was weakly correlated among methods, with greatest agreement and field consistency observed among the biomechanical approaches. Conclusions: The choice of registration algorithm significantly impacts registration accuracy and variability of deformation fields. Among current sparse data driven image-to-physical registration algorithms, biomechanical simulations that incorporate task-specific insight into boundary conditions seem to offer best performance.

6.
J Med Imaging (Bellingham) ; 10(3): 036002, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274758

RESUMO

Purpose: Pancreatic ductal adenocarcinoma (PDAC) frequently presents as hypo- or iso-dense masses with poor contrast delineation from surrounding parenchyma, which decreases reproducibility of manual dimensional measurements obtained during conventional radiographic assessment of treatment response. Longitudinal registration between pre- and post-treatment images may produce imaging biomarkers that more reliably quantify treatment response across serial imaging. Approach: Thirty patients who prospectively underwent a neoadjuvant chemotherapy regimen as part of a clinical trial were retrospectively analyzed in this study. Two image registration methods were applied to quantitatively assess longitudinal changes in tumor volume and tumor burden across the neoadjuvant treatment interval. Longitudinal registration errors of the pancreas were characterized, and registration-based treatment response measures were correlated to overall survival (OS) and recurrence-free survival (RFS) outcomes over 5-year follow-up. Corresponding biomarker assessments via manual tumor segmentation, the standardized response evaluation criteria in solid tumors (RECIST), and pathological examination of post-resection tissue samples were analyzed as clinical comparators. Results: Average target registration errors were 2.56±2.45 mm for a biomechanical image registration algorithm and 4.15±3.63 mm for a diffeomorphic intensity-based algorithm, corresponding to 1-2 times voxel resolution. Cox proportional hazards analysis showed that registration-derived changes in tumor burden were significant predictors of OS and RFS, while none of the alternative comparators, including manual tumor segmentation, RECIST, or pathological variables were associated with consequential hazard ratios. Additional ROC analysis at 1-, 2-, 3-, and 5-year follow-up revealed that registration-derived changes in tumor burden between pre- and post-treatment imaging were better long-term predictors for OS and RFS than the clinical comparators. Conclusions: Volumetric changes measured by longitudinal deformable image registration may yield imaging biomarkers to discriminate neoadjuvant treatment response in ill-defined tumors characteristic of PDAC. Registration-based biomarkers may help to overcome visual limits of radiographic evaluation to improve clinical outcome prediction and inform treatment selection.

7.
IEEE Trans Biomed Eng ; 70(7): 2002-2012, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37018246

RESUMO

OBJECTIVE: Deformable object tracking is common in the computer vision field, with applications typically focusing on nonrigid shape detection and usually not requiring specific three-dimensional point localization. In surgical guidance however, accurate navigation is intrinsically linked to precise correspondence of tissue structure. This work presents a contactless, automated fiducial acquisition method using stereo video of the operating field to provide reliable three-dimensional fiducial localization for an image guidance framework in breast conserving surgery. METHODS: On n = 8 breasts from healthy volunteers, the breast surface was measured throughout the full range of arm motion in a supine mock-surgical position. Using hand-drawn inked fiducials, adaptive thresholding, and KAZE feature matching, precise three-dimensional fiducial locations were detected and tracked through tool interference, partial and complete marker occlusions, significant displacements and nonrigid shape distortions. RESULTS: Compared to digitization with a conventional optically tracked stylus, fiducials were automatically localized with 1.6 ± 0.5 mm accuracy and the two measurement methods did not significantly differ. The algorithm provided an average false discovery rate <0.1% with all cases' rates below 0.2%. On average, 85.6 ± 5.9% of visible fiducials were automatically detected and tracked, and 99.1 ± 1.1% of frames provided only true positive fiducial measurements, which indicates the algorithm achieves a data stream that can be used for reliable on-line registration. CONCLUSIONS: Tracking is robust to occlusions, displacements, and most shape distortions. SIGNIFICANCE: This work-flow friendly data collection method provides highly accurate and precise three-dimensional surface data to drive an image guidance system for breast conserving surgery.


Assuntos
Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Movimento (Física) , Algoritmos , Imageamento Tridimensional/métodos , Marcadores Fiduciais
8.
Clin Biomech (Bristol, Avon) ; 104: 105927, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36890069

RESUMO

BACKGROUND: Simulating soft-tissue breast deformations is of interest for many applications including image fusion, longitudinal registration, and image-guided surgery. For the surgical use case, positional changes cause breast deformations that compromise the use of preoperative imaging to inform tumor excision. Even when acquiring imaging in the supine position, which better reflects surgical presentation, deformations still occur due to arm motion and orientation changes. A biomechanical modeling approach to simulate supine breast deformations for surgical applications must be both accurate and compatible with the clinical workflow. METHODS: A supine MR breast imaging dataset from n = 11 healthy volunteers was used to simulate surgical deformations by acquiring images in arm-down and arm-up positions. Three linear-elastic modeling approaches with varying levels of complexity were used to predict deformations caused by this arm motion: a homogeneous isotropic model, a heterogeneous isotropic model, and a heterogeneous anisotropic model using a transverse-isotropic constitutive model. FINDINGS: The average target registration errors for subsurface anatomical features were 5.4 ± 1.5 mm for the homogeneous isotropic model, 5.3 ± 1.5 mm for the heterogeneous isotropic model, and 4.7 ± 1.4 mm for the heterogeneous anisotropic model. A statistically significant improvement in target registration error was observed between the heterogeneous anisotropic model and both the homogeneous and the heterogeneous isotropic models (P < 0.01). INTERPRETATION: While a model that fully incorporates all constitutive complexities of anatomical structure likely achieves the best accuracy, a computationally tractable heterogeneous anisotropic model provided significant improvement and may be applicable for image-guided breast surgeries.


Assuntos
Mama , Cirurgia Assistida por Computador , Humanos , Anisotropia , Mama/diagnóstico por imagem , Mama/cirurgia , Imageamento por Ressonância Magnética/métodos , Cirurgia Assistida por Computador/métodos , Algoritmos
9.
J Med Imaging (Bellingham) ; 9(6): 065001, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36388143

RESUMO

Purpose: Breast conserving surgery (BCS) is a common procedure for early-stage breast cancer patients. Supine preoperative magnetic resonance (MR) breast imaging for visualizing tumor location and extent, while not standard for procedural guidance, is being explored since it more closely represents the surgical presentation compared to conventional diagnostic imaging positions. Despite this preoperative imaging position, deformation is still present between the supine imaging and surgical state. As a result, a fast and accurate image-to-physical registration approach is needed to realize image-guided breast surgery. Approach: In this study, three registration methods were investigated on healthy volunteers' breasts ( n = 11 ) with the supine arm-down position simulating preoperative imaging and supine arm-up position simulating intraoperative presentation. The registration methods included (1) point-based rigid registration using synthetic fiducials, (2) nonrigid biomechanical model-based registration using sparse data, and (3) a data-dense three-dimensional diffeomorphic image-based registration from the Advanced Normalization Tools (ANTs) repository. Additionally, deformation metrics (volume change and anisotropy) were calculated from the ANTs deformation field to better understand breast material mechanics. Results: The average target registration errors (TRE) were 10.4 ± 2.3 , 6.4 ± 1.5 , and 2.8 ± 1.3 mm (mean ± standard deviation) and the average fiducial registration errors (FRE) were 7.8 ± 1.7 , 2.5 ± 1.1 , and 3.1 ± 1.1 mm for the point-based rigid, nonrigid biomechanical, and ANTs registrations, respectively. The mechanics-based deformation metrics revealed an overall anisotropic tissue behavior and a statistically significant difference in volume change between glandular and adipose tissue, suggesting that nonrigid modeling methods may be improved by incorporating material heterogeneity and anisotropy. Conclusions: Overall, registration accuracy significantly improved with increasingly flexible and data-dense registration methods. Analysis of these outcomes may inform the future development of image guidance systems for lumpectomy procedures.

10.
IEEE Trans Biomed Eng ; 69(12): 3760-3771, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35604993

RESUMO

OBJECTIVE: During breast conserving surgery (BCS), magnetic resonance (MR) images aligned to accurately display intraoperative lesion locations can offer improved understanding of tumor extent and position relative to breast anatomy. Unfortunately, even under consistent supine conditions, soft tissue deformation compromises image-to-physical alignment and results in positional errors. METHODS: A finite element inverse modeling technique has been developed to nonrigidly register preoperative supine MR imaging data to the surgical scene for improved localization accuracy during surgery. Registration is driven using sparse data compatible with acquisition during BCS, including corresponding surface fiducials, sparse chest wall contours, and the intra-fiducial skin surface. Deformation predictions were evaluated at surface fiducial locations and subsurface tissue features that were expertly identified and tracked. Among n = 7 different human subjects, an average of 22 ± 3 distributed subsurface targets were analyzed in each breast volume. RESULTS: The average target registration error (TRE) decreased significantly when comparing rigid registration to this nonrigid approach (10.4 ± 2.3 mm vs 6.3 ± 1.4 mm TRE, respectively). When including a single subsurface feature as additional input data, the TRE significantly improved further (4.2 ± 1.0 mm TRE), and in a region of interest within 15 mm of a mock biopsy clip TRE was 3.9 ± 0.9 mm. CONCLUSION: These results demonstrate accurate breast deformation estimates based on sparse-data-driven model predictions. SIGNIFICANCE: The data suggest that a computational imaging approach can account for image-to-surgery shape changes to enhance surgical guidance during BCS.


Assuntos
Mastectomia Segmentar , Cirurgia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Mama/cirurgia , Cirurgia Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Algoritmos
11.
Int J Comput Assist Radiol Surg ; 16(11): 2055-2066, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34382176

RESUMO

PURPOSE: To reduce reoperation rates for image-guided breast-conserving surgery, the enhanced sensitivity of magnetic resonance (MR) supine imaging may be leveraged. However, accurate tissue correspondence between images and their physical counterpart in the surgical presentation is challenging due to breast deformations (e.g., from patient/arm position changes, and operating room table rotation differences). In this study, standard rigid registration methods are employed and tissue deformation is characterized. METHODS: On n = 10 healthy breasts, surface displacements were measured by comparing intraoperative fiducial locations as the arm was moved from conventional MR scanning positions (arm-down and arm-up) to the laterally extended surgical configuration. Supine MR images in the arm-down and arm-up positions were registered to mock intraoperative presentations. RESULTS: Breast displacements from a supine MR imaging configuration to a mock surgical presentation were 28.9 ± 9.2 mm with shifts occurring primarily in the inferior/superior direction. With respect to supine MR to surgical alignment, the average fiducial, target, and maximum target registration errors were 9.0 ± 1.7 mm, 9.3 ± 1.7 mm, and 20.0 ± 7.6 mm, respectively. Even when maintaining similar arm positions in the MR image and mock surgery, the respective averages were 6.0 ± 1.0 mm, 6.5 ± 1.1 mm, and 12.5 ± 2.8 mm. CONCLUSION: From supine MR positioning to surgical presentation, the breast undergoes large displacements (9.9-70.1 mm). The data also suggest that significant nonrigid deformations (9.3 ± 1.7 mm with 20.0 mm average maximum) exist that need to be considered in image guidance and modeling applications.


Assuntos
Neoplasias da Mama , Cirurgia Assistida por Computador , Mama/diagnóstico por imagem , Mama/cirurgia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Marcadores Fiduciais , Humanos , Imageamento por Ressonância Magnética
12.
IEEE Trans Med Imaging ; 40(4): 1290-1302, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460370

RESUMO

Image-guided intervention for soft tissue organs depends on the accuracy of deformable registration methods to achieve effective results. While registration techniques based on elastic theory are prevalent, no methods yet exist that can prospectively estimate registration uncertainty to regulate sources and mitigate consequences of localization error in deforming organs. This paper introduces registration uncertainty metrics based on dispersion of strain energy from boundary constraints to predict the proportion of target registration error (TRE) remaining after nonrigid elastic registration. These uncertainty metrics depend on the spatial distribution of intraoperative constraints provided to registration with relation to patient-specific organ geometry. Predictive linear and bivariate gamma models are fit and cross-validated using an existing dataset of 6291 simulated registration examples, plus 699 novel simulated registrations withheld for independent validation. Average uncertainty and average proportion of TRE remaining after elastic registration are strongly correlated ( r = 0.78 ), with mean absolute difference in predicted TRE equivalent to 0.9 ± 0.6 mm (cross-validation) and 0.9 ± 0.5 mm (independent validation). Spatial uncertainty maps also permit localized TRE estimates accurate to an equivalent of 3.0 ± 3.1 mm (cross-validation) and 1.6 ± 1.2 mm (independent validation). Additional clinical evaluation of vascular features yields localized TRE estimates accurate to 3.4 ± 3.2 mm. This work formalizes a lower bound for the inherent uncertainty of nonrigid elastic registrations given coverage of intraoperative data constraints, and demonstrates a relation to TRE that can be predictively leveraged to inform data collection and provide a measure of registration confidence for elastic methods.

13.
Front Physiol ; 12: 820251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185606

RESUMO

Computational tools are beginning to enable patient-specific surgical planning to localize and prescribe thermal dosing for liver cancer ablation therapy. Tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) have been found to affect ablative therapies, but current thermal dosing guidance practices do not account for these differences. Computational modeling of ablation procedures can integrate these sources of patient specificity to guide therapy planning and delivery. This paper establishes an imaging-data-driven framework for patient-specific biophysical modeling to predict ablation extents in livers with varying fat content in the context of microwave ablation (MWA) therapy. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models and mDIXON fat-quantification images were acquired and analyzed to establish fat content and determine biophysical properties. Simulated patient-specific microwave ablations of tumor and healthy tissue were performed at four levels of fatty liver disease. Ablation models with greater fat content demonstrated significantly larger treatment volumes compared to livers with less severe disease states. More specifically, the results indicated an eightfold larger difference in necrotic volumes with fatty livers vs. the effects from the presence of more conductive tumor tissue. Additionally, the evolution of necrotic volume formation as a function of the thermal dose was influenced by the presence of a tumor. Fat quantification imaging showed multi-valued spatially heterogeneous distributions of fat deposition, even within their respective disease classifications (e.g., low, mild, moderate, high-fat). Altogether, the results suggest that clinical fatty liver disease levels can affect MWA, and that fat-quantitative imaging data may improve patient specificity for this treatment modality.

14.
IEEE Trans Med Imaging ; 39(6): 2223-2234, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31976882

RESUMO

During image guided liver surgery, soft tissue deformation can cause considerable error when attempting to achieve accurate localization of the surgical anatomy through image-to-physical registration. In this paper, a linearized iterative boundary reconstruction technique is proposed to account for these deformations. The approach leverages a superposed formulation of boundary conditions to rapidly and accurately estimate the deformation applied to a preoperative model of the organ given sparse intraoperative data of surface and subsurface features. With this method, tracked intraoperative ultrasound (iUS) is investigated as a potential data source for augmenting registration accuracy beyond the capacity of conventional organ surface registration. In an expansive simulated dataset, features including vessel contours, vessel centerlines, and the posterior liver surface are extracted from iUS planes. Registration accuracy is compared across increasing data density to establish how iUS can be best employed to improve target registration error (TRE). From a baseline average TRE of 11.4 ± 2.2 mm using sparse surface data only, incorporating additional sparse features from three iUS planes improved average TRE to 6.4 ± 1.0 mm. Furthermore, increasing the sparse coverage to 16 tracked iUS planes improved average TRE to 3.9 ± 0.7 mm, exceeding the accuracy of registration based on complete surface data available with more cumbersome intraoperative CT without contrast. Additionally, the approach was applied to three clinical cases where on average error improved 67% over rigid registration and 56% over deformable surface registration when incorporating additional features from one independent tracked iUS plane.


Assuntos
Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Fígado/cirurgia , Ultrassonografia
15.
IEEE Trans Biomed Eng ; 67(6): 1548-1557, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31494543

RESUMO

OBJECTIVE: Accurate prospective modeling of microwave ablation (MWA) procedures can provide powerful planning and navigational information to physicians. However, patient-specific tissue properties are generally unavailable and can vary based on factors such as relative perfusion and state of disease. Therefore, a need exists for modeling frameworks that account for variations in tissue properties. METHODS: In this study, we establish an inverse modeling approach to reconstruct a set of tissue properties that best fit the model-predicted and observed ablation zone extents in a series of phantoms of varying fat content. We then create a model of these tissue properties as a function of fat content and perform a comprehensive leave-one-out evaluation of the predictive property model. Furthermore, we validate the inverse-model predictions in a separate series of phantoms that include co-recorded temperature data. RESULTS: This model-based approach yielded thermal profiles in close agreement with experimental measurements in the series of validation phantoms (average root-mean-square error of 4.8 °C). The model-predicted ablation zones showed compelling overlap with observed ablations in both the series of validation phantoms (93.4 ± 2.2%) and the leave-one-out cross validation study (86.6 ± 5.3%). These results demonstrate an average improvement of 17.3% in predicted ablation zone overlap when comparing the presented property-model to properties derived from phantom component volume fractions. CONCLUSION: These results demonstrate accurate model-predicted ablation estimates based on image-driven determination of tissue properties. SIGNIFICANCE: The work demonstrates, as a proof-of-concept, that physical modeling parameters can be linked with quantitative medical imaging to improve the utility of predictive procedural modeling for MWA.


Assuntos
Técnicas de Ablação , Ablação por Radiofrequência , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Temperatura
16.
J Med Imaging (Bellingham) ; 6(2): 025007, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31131291

RESUMO

We compare a surface-driven, model-based deformation correction method to a clinically relevant rigid registration approach within the application of image-guided microwave ablation for the purpose of demonstrating improved localization and antenna placement in a deformable hepatic phantom. Furthermore, we present preliminary computational modeling of microwave ablation integrated within the navigational environment to lay the groundwork for a more comprehensive procedural planning and guidance framework. To achieve this, we employ a simple, retrospective model of microwave ablation after registration, which allows a preliminary evaluation of the combined therapeutic and navigational framework. When driving registrations with full organ surface data (i.e., as could be available in a percutaneous procedure suite), the deformation correction method improved average ablation antenna registration error by 58.9% compared to rigid registration (i.e., 2.5 ± 1.1 mm , 5.6 ± 2.3 mm of average target error for corrected and rigid registration, respectively) and on average improved volumetric overlap between the modeled and ground-truth ablation zones from 67.0 ± 11.8 % to 85.6 ± 5.0 % for rigid and corrected, respectively. Furthermore, when using sparse-surface data (i.e., as is available in an open surgical procedure), the deformation correction improved registration error by 38.3% and volumetric overlap from 64.8 ± 12.4 % to 77.1 ± 8.0 % for rigid and corrected, respectively. We demonstrate, in an initial phantom experiment, enhanced navigation in image-guided hepatic ablation procedures and identify a clear multiphysics pathway toward a more comprehensive thermal dose planning and deformation-corrected guidance framework.

17.
J Med Imaging (Bellingham) ; 5(2): 021203, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29285519

RESUMO

Laparoscopic liver surgery is challenging to perform due to a compromised ability of the surgeon to localize subsurface anatomy in the constrained environment. While image guidance has the potential to address this barrier, intraoperative factors, such as insufflation and variable degrees of organ mobilization from supporting ligaments, may generate substantial deformation. The severity of laparoscopic deformation in humans has not been characterized, and current laparoscopic correction methods do not account for the mechanics of how intraoperative deformation is applied to the liver. We first measure the degree of laparoscopic deformation at two insufflation pressures over the course of laparoscopic-to-open conversion in 25 patients. With this clinical data alongside a mock laparoscopic phantom setup, we report a biomechanical correction approach that leverages anatomically load-bearing support surfaces from ligament attachments to iteratively reconstruct and account for intraoperative deformations. Laparoscopic deformations were significantly larger than deformations associated with open surgery, and our correction approach yielded subsurface target error of [Formula: see text] and surface error of [Formula: see text] using only sparse surface data with realistic surgical extent. Laparoscopic surface data extents were examined and found to impact registration accuracy. Finally, we demonstrate viability of the correction method with clinical data.

18.
IEEE Trans Med Imaging ; 36(7): 1502-1510, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28212080

RESUMO

In open image-guided liver surgery (IGLS), a sparse representation of the intraoperative organ surface can be acquired to drive image-to-physical registration. We hypothesize that uncharacterized error induced by variation in the collection patterns of organ surface data limits the accuracy and robustness of an IGLS registration. Clinical validation of such registration methods is challenged due to the difficulty in obtaining data representative of the true state of organ deformation. We propose a novel human-to-phantom validation framework that transforms surface collection patterns from in vivo IGLS procedures (n = 13) onto a well-characterized hepatic deformation phantom for the purpose of validating surface-driven, volumetric nonrigid registration methods. An important feature of the approach is that it centers on combining workflow-realistic data acquisition and surgical deformations that are appropriate in behavior and magnitude. Using the approach, we investigate volumetric target registration error (TRE) with both current rigid IGLS and our improved nonrigid registration methods. Additionally, we introduce a spatial data resampling approach to mitigate the workflow-sensitive sampling problem. Using our human-to-phantom approach, TRE after routine rigid registration was 10.9 ± 0.6 mm with a signed closest point distance associated with residual surface fit in the range of ±10 mm, highly representative of open liver resections. After applying our novel resampling strategy and improved deformation correction method, TRE was reduced by 51%, i.e., a TRE of 5.3 ± 0.5 mm. This paper reported herein realizes a novel tractable approach for the validation of image-to-physical registration methods and demonstrates promising results for our correction method.


Assuntos
Fígado , Algoritmos , Hepatectomia , Humanos , Imagens de Fantasmas , Cirurgia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA