Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1379228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745956

RESUMO

Aims: Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods: Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results: Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions: GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Lipodistrofia , Liraglutida , Animais , Masculino , Camundongos , Glicemia/metabolismo , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Resistência à Insulina , Lipodistrofia/tratamento farmacológico , Lipodistrofia/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Mol Metab ; 84: 101933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583571

RESUMO

OBJECTIVE: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.


Assuntos
Síndrome de Alstrom , Células-Tronco Mesenquimais , Camundongos Knockout , Animais , Camundongos , Masculino , Feminino , Células-Tronco Mesenquimais/metabolismo , Síndrome de Alstrom/metabolismo , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Resistência à Insulina , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Obesidade/metabolismo , Obesidade/genética , Hiperfagia/metabolismo , Hiperfagia/genética , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Composição Corporal
3.
Cell Metab ; 36(5): 1076-1087.e4, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653246

RESUMO

Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.


Assuntos
Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Camundongos , Humanos , Masculino , Tecido Adiposo/metabolismo , Camundongos Knockout , Fígado/metabolismo , Feminino , Adiposidade
4.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518777

RESUMO

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo , Tronco Encefálico , Comportamento Alimentar , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Animais , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Camundongos , Masculino , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ingestão de Alimentos/fisiologia , Camundongos Endogâmicos C57BL , Feminino
5.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873427

RESUMO

Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results: Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions: Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.

6.
Neuropharmacology ; 241: 109758, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827445

RESUMO

Obesity has become a worldwide health challenge and commonly results from the intake of more calories than the body requires. The brain represents the master controller of food intake and as such has been the target of obesity medications. However, key mechanisms of druggable targets remain to be defined. Neurons within the arcuate nucleus of the hypothalamus co-expressing neuropeptide Y (NPY), agouti-related protein (AgRP) and GABA (NAG) are fundamental stimulators of hunger and food intake. NAG neurons also inhibit local satiety-promoting pro-opiomelanocortin (POMC) neurons. Agonists of the 1B subtype of metabotropic serotonin receptor (5-HT1BR) reduce food intake in part through the inhibition of hunger-promoting NAG neurons. We first confirmed that 5-HT1BR activation suppressed intake of a palatable Western diet in a mouse model of common dietary-induced obesity and genetically prone obesity. Next, we combined several electrophysiological approaches to analyse the effect of 5-HT1BRs in NAG neuron cell activity and GABA release. 5-HT1BR activation reduced NAG neuron action potential frequency and neurotransmitter release. We found that 5-HT1BR impact on GABA release from NAG neurons is mediated through voltage-gated Ca2+ channels with a critical input from glutamate receptors of AMPA subtype (AMPARs). As a fundamental outcome, this type of interplay provides an uncommon example of metabotropic action of AMPARs which regulates inhibitory signalling due to modulation of GABA release. As a translational outcome, our results provide a key mechanism through which 5-HT1BR drugs inhibit appetite-stimulating neurons within the brain to suppress food intake. This article is part of the Special Issue on "Ukrainian Neuroscience".


Assuntos
Receptores de AMPA , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Camundongos Transgênicos , Receptores de AMPA/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Proteínas de Transporte/metabolismo , Ácido gama-Aminobutírico/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteína Relacionada com Agouti/metabolismo
7.
iScience ; 26(8): 107373, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599827

RESUMO

Vitamin A is a micronutrient essential for vertebrate animals maintained in homeostatic balance in the body; however, little is known about the control of this balance. This study investigated whether the hypothalamus, a key integrative brain region, regulates vitamin A levels in the liver and circulation. Vitamin A in the form of retinol or retinoic acid was stereotactically injected into the 3rd ventricle of the rat brain. Alternatively, retinoids in the mouse hypothalamus were altered through retinol-binding protein 4 (Rbp4) gene knockdown. This led to rapid change in the liver proteins controlling vitamin A homeostasis as well as vitamin A itself in liver and the circulation. Prolonged disruption of Rbp4 in the region of the arcuate nucleus of the mouse hypothalamus altered retinol levels in the liver. This supports the concept that the brain may sense retinoids and influence whole-body vitamin A homeostasis with a possible "vitaminostatic" role.

8.
Physiol Rep ; 11(15): e15793, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37568262

RESUMO

AIMS: Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload. METHODS: We compared muscle mass and muscle fiber morphology between Stc2-/- (n = 21) and wild-type (n = 15) mice. We then quantified IGF1, IGF2, IGF binding proteins -4 and -5 (IGFBP-4, IGFBP-5), PAPP-A and STC2 in plantaris muscles of wild-type mice subjected to 4-week unilateral overload (n = 14). RESULTS: Stc2-/- mice showed up to 10% larger muscle mass compared with wild-type mice. This increase was mediated by greater cross-sectional area of muscle fibers. Overload increased plantaris mass and components of the IGF axis, including quantities of IGF1 (by 2.41-fold, p = 0.0117), IGF2 (1.70-fold, p = 0.0461), IGFBP-4 (1.48-fold, p = 0.0268), PAPP-A (1.30-fold, p = 0.0154) and STC2 (1.28-fold, p = 0.019). CONCLUSION: Here we provide evidence that STC2 is an inhibitor of muscle growth upregulated, along with other components of the IGF axis, during overload-induced muscle hypertrophy.


Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Hormônios Peptídicos , Animais , Camundongos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipertrofia , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/metabolismo , Hormônios Peptídicos/metabolismo , Proteína Plasmática A Associada à Gravidez/genética
9.
Mol Metab ; 68: 101665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592795

RESUMO

OBJECTIVE: Overweight and obesity are endemic in developed countries, with a substantial negative impact on human health. Medications developed to treat obesity include agonists for the G-protein coupled receptors glucagon-like peptide-1 (GLP-1R; e.g. liraglutide), serotonin 2C (5-HT2CR; e.g, lorcaserin), and melanocortin4 (MC4R) which reduce body weight primarily by suppressing food intake. However, the mechanisms underlying the therapeutic food intake suppressive effects are still being defined and were investigated here. METHODS: We profiled PPG neurons in the nucleus of the solitary tract (PPGNTS) using single nucleus RNA sequencing (Nuc-Seq) and histochemistry. We next examined the requirement of PPGNTS neurons for obesity medication effects on food intake by virally ablating PPGNTS neurons. Finally, we assessed the effects on food intake of the combination of liraglutide and lorcaserin. RESULTS: We found that 5-HT2CRs, but not GLP-1Rs or MC4Rs, were widespread in PPGNTS clusters and that lorcaserin significantly activated PPGNTS neurons. Accordingly, ablation of PPGNTS neurons prevented the reduction of food intake by lorcaserin but not MC4R agonist melanotan-II, demonstrating the functional significance of PPGNTS 5-HT2CR expression. Finally, the combination of lorcaserin with GLP-1R agonists liraglutide or exendin-4 produced greater food intake reduction as compared to either monotherapy. CONCLUSIONS: These findings identify a necessary mechanism through which obesity medication lorcaserin produces its therapeutic benefit, namely brainstem PPGNTS neurons. Moreover, these data reveal a strategy to augment the therapeutic profile of the current frontline treatment for obesity, GLP-1R agonists, via coadministration with 5-HT2CR agonists.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Liraglutida , Humanos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Serotonina/metabolismo , Apetite , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Núcleo Solitário/metabolismo , Ingestão de Alimentos , Neurônios/metabolismo
10.
Mol Psychiatry ; 26(12): 7211-7224, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34290371

RESUMO

Obesity is primarily a consequence of consuming calories beyond energetic requirements, but underpinning drivers have not been fully defined. 5-Hydroxytryptamine (5-HT) neurons in the dorsal Raphe nucleus (5-HTDRN) regulate different types of feeding behavior, such as eating to cope with hunger or for pleasure. Here, we observed that activation of 5-HTDRN to hypothalamic arcuate nucleus (5-HTDRN → ARH) projections inhibits food intake driven by hunger via actions at ARH 5-HT2C and 5-HT1B receptors, whereas activation of 5-HTDRN to ventral tegmental area (5-HTDRN → VTA) projections inhibits non-hunger-driven feeding via actions at 5-HT2C receptors. Further, hunger-driven feeding gradually activates ARH-projecting 5-HTDRN neurons via inhibiting their responsiveness to inhibitory GABAergic inputs; non-hunger-driven feeding activates VTA-projecting 5-HTDRN neurons through reducing a potassium outward current. Thus, our results support a model whereby parallel circuits modulate feeding behavior either in response to hunger or to hunger-independent cues.


Assuntos
Fome , Serotonina , Núcleo Dorsal da Rafe , Neurônios/fisiologia , Área Tegmentar Ventral/fisiologia
11.
J Neuroendocrinol ; 33(4): e12960, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33909316

RESUMO

Obesity and type 2 diabetes are key healthcare challenges of the 21st century. Subsequent to its discovery in 1948, serotonin (5-hydroxytryptamine; 5-HT) has emerged as a principal modulator of energy homeostasis and body weight, prompting it to be a target of weight loss medications (eg, fenfluramine, D-fenfluramine, fenfluramine-phentermine and sibutramine). The potential risk of off-target effects led to these medications being withdrawn from clinical use and spurred drug discovery into 5-HT receptor selective ligands. The serotonin 2C receptor (5-HT2C R) is the primary receptor through which 5-HT impacts feeding and body weight and 5-HT2C R agonist lorcaserin was released for obesity treatment in 2012. Obese patients with type 2 diabetes prescribed medications that produce weight loss commonly observe improvements in type 2 diabetes. However, recent research has provided compelling evidence that 5-HT2C R agonists produce effects on blood glucose and insulin sensitivity independent of weight loss. As such, neuroactive 5-HT2C R agonists are a potential new category of type 2 diabetes medications. 5-HT is also expressed within pancreatic ß cells, is co-released with insulin and may have a role in modulating insulin secretion. This review highlights the latest advances in the function of 5-HT in body weight, insulin release and glycaemic control.


Assuntos
Glicemia/metabolismo , Peso Corporal/fisiologia , Secreção de Insulina/fisiologia , Serotonina/metabolismo , Animais , Controle Glicêmico , Humanos
12.
FASEB J ; 35(1): e21161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33156577

RESUMO

Association of G protein-coupled receptors into heterodimeric complexes has been reported for over 50 receptor pairs in vitro but functional in vivo validation remains a challenge. Our recent in vitro studies defined the functional fingerprint of heteromers composed of Gi -coupled melatonin MT2 receptors and Gq -coupled serotonin 5-HT2C receptors, in which melatonin transactivates phospholipase C (PLC) through 5-HT2C . Here, we identified this functional fingerprint in the mouse brain. Gq protein activation was probed by [35 S]GTPγS incorporation followed by Gq immunoprecipitation, and PLC activation by determining the inositol phosphate levels in brain lysates of animals previously treated with melatonin. Melatonin concentration-dependently activated Gq proteins and PLC in the hypothalamus and cerebellum but not in cortex. These effects were inhibited by the 5-HT2C receptor-specific inverse agonist SB-243213, and were absent in MT2 and 5-HT2C knockout mice, fully recapitulating previous in vitro data and indicating the involvement of MT2 /5-HT2C heteromers. The antidepressant agomelatine had a similar effect than melatonin when applied alone but blocked the melatonin-promoted Gq activation due to its 5-HT2C antagonistic component. Collectively, we provide strong functional evidence for the existence of MT2 /5-HT2C heteromeric complexes in mouse brain. These heteromers might participate in the in vivo effects of agomelatine.


Assuntos
Encéfalo/metabolismo , Regulação Enzimológica da Expressão Gênica , Multimerização Proteica , Receptor MT2 de Melatonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Ativação Transcricional , Fosfolipases Tipo C/biossíntese , Acetamidas/farmacologia , Animais , Indóis/farmacologia , Masculino , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Receptor MT2 de Melatonina/genética , Receptor 5-HT2C de Serotonina/genética , Fosfolipases Tipo C/genética
13.
Int J Obes (Lond) ; 44(9): 1946-1957, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719434

RESUMO

BACKGROUND: Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS: Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS: Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS: Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.


Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipotálamo/metabolismo , Receptores de Serotonina , Animais , Dieta , Feminino , Masculino , Obesidade/metabolismo , Ratos , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Transcriptoma/genética
14.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32166324

RESUMO

Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.


Assuntos
Tronco Encefálico/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colecistocinina/metabolismo , Colina O-Acetiltransferase/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/metabolismo , Nucleobindinas/metabolismo , Regiões Promotoras Genéticas , Receptores para Leptina/genética , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Mol Metab ; 17: 17-27, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146176

RESUMO

OBJECTIVE: Appropriate glucose levels are essential for survival; thus, the detection and correction of low blood glucose is of paramount importance. Hypoglycemia prompts an integrated response involving reduction in insulin release and secretion of key counter-regulatory hormones glucagon and epinephrine that together promote endogenous glucose production to restore normoglycemia. However, specifically how this response is orchestrated remains to be fully clarified. The low affinity hexokinase glucokinase is found in glucose-sensing cells involved in glucose homeostasis including pancreatic ß-cells and in certain brain areas. Here, we aimed to examine the role of glucokinase in triggering counter-regulatory hormonal responses to hypoglycemia, hypothesizing that reduced glucokinase activity would lead to increased and/or earlier triggering of responses. METHODS: Hyperinsulinemic glucose clamps were performed to examine counter-regulatory responses to controlled hypoglycemic challenges created in humans with monogenic diabetes resulting from heterozygous glucokinase mutations (GCK-MODY). To examine the relative importance of glucokinase in different sensing areas, we then examined responses to clamped hypoglycemia in mice with molecularly defined disruption of whole body and/or brain glucokinase. RESULTS: GCK-MODY patients displayed increased and earlier glucagon responses during hypoglycemia compared with a group of glycemia-matched patients with type 2 diabetes. Consistent with this, glucagon responses to hypoglycemia were also increased in I366F mice with mutated glucokinase and in streptozotocin-treated ß-cell ablated diabetic I366F mice. Glucagon responses were normal in conditional brain glucokinase-knockout mice, suggesting that glucagon release during hypoglycemia is controlled by glucokinase-mediated glucose sensing outside the brain but not in ß-cells. For epinephrine, we found increased responses in GCK-MODY patients, in ß-cell ablated diabetic I366F mice and in conditional (nestin lineage) brain glucokinase-knockout mice, supporting a role for brain glucokinase in triggering epinephrine release. CONCLUSIONS: Our data suggest that glucokinase in brain and other non ß-cell peripheral hypoglycemia sensors is important in glucose homeostasis, allowing the body to detect and respond to a falling blood glucose.


Assuntos
Diabetes Mellitus/metabolismo , Glucoquinase/fisiologia , Hipoglicemia/metabolismo , Adulto , Animais , Glicemia/análise , Diabetes Mellitus/genética , Modelos Animais de Doenças , Epinefrina , Feminino , Glucagon/sangue , Glucoquinase/metabolismo , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo , Hipoglicemia/fisiopatologia , Hipoglicemiantes , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
16.
Cell Metab ; 28(4): 619-630.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30146485

RESUMO

To meet the challenge to human health posed by obesity, a better understanding of the regulation of feeding is essential. Medications targeting 5-hydroxytryptamine (5-HT; serotonin) 2C receptors (htr2c; 5-HT2CR) improve obesity. Here we probed the functional significance of 5-HT2CRs specifically within the brainstem nucleus of the solitary tract (5-HT2CRNTS) in feeding behavior. Selective activation of 5-HT2CRNTS decreased feeding and was sufficient to mediate acute food intake reductions elicited by the 5-HT2CR agonist obesity medication lorcaserin. Similar to pro-opiomelanocortin neurons expressed within the hypothalamic arcuate nucleus (POMCARC), a subset of POMCNTS neurons co-expressed 5-HT2CRs and were activated by 5-HT2CR agonists. Knockdown of POMCNTS prevented the acute appetite-suppressive effect of lorcaserin, whereas POMCARC knockdown prevented the full anorectic effect. These data identify 5-HT2CRNTS as a sufficient subpopulation of 5-HT2CRs in reducing food intake when activated and reveal that 5-HT2CR agonist obesity medications require POMC within the NTS and ARC to reduce food intake.


Assuntos
Depressores do Apetite/uso terapêutico , Benzazepinas/uso terapêutico , Ingestão de Alimentos/fisiologia , Obesidade/tratamento farmacológico , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Núcleo Solitário/metabolismo , Análise de Variância , Animais , Depressores do Apetite/metabolismo , Regulação do Apetite/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/citologia , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Comportamento Alimentar/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Estatísticas não Paramétricas , Transfecção
17.
Mol Metab ; 14: 130-138, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29914853

RESUMO

OBJECTIVE: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. METHODS: We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. RESULTS: The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. CONCLUSIONS: Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH.


Assuntos
Metabolismo Energético , Hipotálamo/citologia , Neurônios/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Animais , Feminino , Deleção de Genes , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/classificação , Neurônios/citologia , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Receptores para Leptina/metabolismo
18.
Sci Rep ; 8(1): 55, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311632

RESUMO

Obesity places an enormous medical and economic burden on society. The principal driver appears to be central leptin resistance with hyperleptinemia. Accordingly, a compound that reverses or prevents leptin resistance should promote weight normalisation and improve glucose homeostasis. The protease Bace1 drives beta amyloid (Aß) production with obesity elevating hypothalamic Bace1 activity and Aß1-42 production. Pharmacological inhibition of Bace1 reduces body weight, improves glucose homeostasis and lowers plasma leptin in diet-induced obese (DIO) mice. These actions are not apparent in ob/ob or db/db mice, indicating the requirement for functional leptin signalling. Decreasing Bace1 activity normalises hypothalamic inflammation, lowers PTP1B and SOCS3 and restores hypothalamic leptin sensitivity and pSTAT3 response in obese mice, but does not affect leptin sensitivity in lean mice. Raising central Aß1-42 levels in the early stage of DIO increases hypothalamic basal pSTAT3 and reduces the amplitude of the leptin pSTAT3 signal without increased inflammation. Thus, elevated Aß1-42 promotes hypothalamic leptin resistance, which is associated with diminished whole-body sensitivity to exogenous leptin and exacerbated body weight gain in high fat fed mice. These results indicate that Bace1 inhibitors, currently in clinical trials for Alzheimer's disease, may be useful agents for the treatment of obesity and associated diabetes.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica , Expressão Gênica , Glucose/metabolismo , Homeostase , Camundongos , Camundongos Knockout , Camundongos Obesos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células Piramidais/metabolismo , Transdução de Sinais
19.
Curr Opin Pharmacol ; 37: 100-106, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29107871

RESUMO

Obesity results from the consumption of food in excess of bodily energy requirements, with the excess energy stored as adipose tissue. Sequelae of obesity, such as heart disease and type 2 diabetes, consistently rank among the top causes of death worldwide. The global prevalence of obesity highlights the urgency of understanding the mechanisms regulating hunger and satiety. Appetite, defined as the motivational drive to obtain food, is regulated by a complex neurocircuitry which integrates a variety of interoceptive signals to gauge nutritional state and guide appropriate levels of food-seeking. Here we review key recent developments in the identification of cell groups, neural circuits, endogenous and exogenous substances, and intracellular signaling pathways which drive hunger and satiety. We also consider particularly promising pharmacological targets for appetite modulation.


Assuntos
Encéfalo/fisiologia , Fome/fisiologia , Saciação/fisiologia , Animais , Depressores do Apetite/farmacologia , Humanos , Transdução de Sinais
20.
Mol Metab ; 6(10): 1092-1102, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031711

RESUMO

OBJECTIVE: The increasing prevalence of type 2 diabetes (T2D) and associated morbidity and mortality emphasizes the need for a more complete understanding of the mechanisms mediating glucose homeostasis to accelerate the identification of new medications. Recent reports indicate that the obesity medication lorcaserin, a 5-hydroxytryptamine (5-HT, serotonin) 2C receptor (5-HT2CR) agonist, improves glycemic control in association with weight loss in obese patients with T2D. Here we evaluate whether lorcaserin has an effect on glycemia without body weight loss and how this effect is achieved. METHODS: Murine models of common and genetic T2D were utilized to probe the direct effect of lorcaserin on glycemic control. RESULTS: Lorcaserin dose-dependently improves glycemic control in mouse models of T2D in the absence of reductions in food intake or body weight. Examining the mechanism of this effect, we reveal a necessary and sufficient neurochemical mediator of lorcaserin's glucoregulatory effects, brain pro-opiomelanocortin (POMC) peptides. To clarify further lorcaserin's therapeutic brain circuit, we examined the receptor target of POMC peptides. We demonstrate that lorcaserin requires functional melanocortin4 receptors on cholinergic preganglionic neurons (MC4RChAT) to exert its effects on glucose homeostasis. In contrast, MC4RChAT signaling did not impact lorcaserin's effects on feeding, indicating a divergence in the neurocircuitry underpinning lorcaserin's therapeutic glycemic and anorectic effects. Hyperinsulinemic-euglycemic clamp studies reveal that lorcaserin reduces hepatic glucose production, increases glucose disposal and improves insulin sensitivity. CONCLUSIONS: These data suggest that lorcaserin's action within the brain represents a mechanistically novel treatment for T2D: findings of significance to a prevalent global disease.


Assuntos
Benzazepinas/farmacologia , Glicemia/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Animais , Benzazepinas/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia , Melanocortinas/farmacologia , Camundongos , Camundongos Transgênicos , Obesidade/tratamento farmacológico , Receptores de Melanocortina/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA