Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Hazard Mater ; 469: 133881, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422740

RESUMO

Bromine (Br) is widely distributed through the lithosphere and hydrosphere, and its chemistry in the environment is affected by natural processes and anthropogenic activities. While the chemistry of Br in the atmosphere has been comprehensively explored, there has never been an overview of the chemistry of Br in soil and aquatic systems. This review synthesizes current knowledge on the sources, geochemistry, health and environmental threats, remediation approaches, and regulatory guidelines pertaining to Br pollution in terrestrial and aquatic environments. Volcanic eruptions, geothermal streams, and seawater are the major natural sources of Br. In soils and sediments, Br undergoes natural cycling between organic and inorganic forms, with bromination reactions occurring both abiotically and through microbial activity. For organisms, Br is a non-essential element; it is passively taken up by plant roots in the form of the Br- anion. Elevated Br- levels can limit plant growth on coastal soils of arid and semi-arid environments. Br is used in the chemical industry to manufacture pesticides, flame retardants, pharmaceuticals, and other products. Anthropogenic sources of organobromine contaminants in the environment are primarily wastewater treatment, fumigants, and flame retardants. When aqueous Br- reacts with oxidants in water treatment plants, it can generate brominated disinfection by-products (DBPs), and exposure to DBPs is linked to adverse human health effects including increased cancer risk. Br- can be removed from aquatic systems using adsorbents, and amelioration of soils containing excess Br- can be achieved by leaching, adding various amendments, or phytoremediation. Developing cost-effective methods for Br- removal from wastewater would help address the problem of toxic brominated DBPs. Other anthropogenic organobromines, such as polybrominated diphenyl ether (PBDE) flame retardants, are persistent, toxic, and bioaccumulative, posing a challenge in environmental remediation. Future research directives for managing Br pollution sustainably in various environmental settings are suggested here.


Assuntos
Ecossistema , Retardadores de Chama , Humanos , Bromo , Retardadores de Chama/análise , Gestão de Riscos , Solo/química
2.
Indoor Air ; 29(3): 499-509, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844099

RESUMO

A simple method for the collection and analysis of the four brominated and chlorinated trihalomethanes (THMs) in air samples is described. Ambient air samples were collected in pre-prepared glass vials, with THM analysis performed using solid-phase microextraction gas chromatography-mass spectrometry, where the need for chemical reagents is minimized. Analytical parameters, including oven temperature program, solvent volume, incubation time, vial agitation, extraction time and temperature, as well as desorption time and temperature, were evaluated to ensure optimal method performance. The developed method allows for point-in-time quantification (compared to an average concentration measured over extended periods of time), with detection limits between 0.7 to 2.6 µg/m3 . Excellent linearity (r2  > 0.99), repeatability (3% to 11% RSD), and reproducibility (3% to 16% RSD) were demonstrated over a concentration range from 2 to 5000 µg/m3 . The method was validated for the analysis of THMs in indoor swimming pool air and was used to investigate the occurrence of THMs in the air above 15 indoor swimming pools. This is the first study to report the occurrence of THMs in swimming pool air in Australia, and concentrations higher than those previously reported in other countries were measured.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Trialometanos/análise , Reprodutibilidade dos Testes , Piscinas
3.
J Environ Manage ; 238: 41-48, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844544

RESUMO

Sewage treatment plants are a potential point source for recycling of phosphorus (P). Several technologies have been proposed to biologically recover P from wastewater. The majority of these technologies are side-stream processes and rely on an external source of soluble organic carbon to facilitate P recovery. To date, no studies have demonstrated the potential to facilitate main-stream recovery of P, using carbon that is naturally present in wastewater. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) is an elegant process that can uptake influent carbon and effectively remove both nitrogen (N) and P from wastewater. SNDPR studies to date, however, have failed to facilitate an end-of-anaerobic-phase P rich liquor, that enables economies of scale to recover influent P. Therefore, this study examined the feasibility of achieving a P rich liquor (e.g. > 70 mg-P/L) in a granular SNDPR process. A synthetic influent that replicated the nutrient and carbon concentrations of municipal wastewater was used to investigate whether carbon in the influent wastewater could enable both nutrient removal and P recovery from wastewater. Our granular SNDPR process was able to facilitate an end-of-anaerobic-phase liquor with P enriched to approximately 100 mg-P/L. A dissolved oxygen (DO) concentration of 0.5 mg/L in a sequencing batch reactor (SBR) was found to be essential to achieve complete nutrient removal and a high P concentration at the end of the anaerobic phase. At this steady state of reactor operation, the abundance of polyphosphate accumulating organisms (PAOs) was 2.6 times the abundance of glycogen accumulating organisms (GAOs). The study also demonstrated the importance of denitrifying polyphosphate accumulating organisms (DPAOs) and glycogen accumulating organisms (DGAOs) to achieve complete removal of N from the effluent. Compared to nitrifying bacteria, the polyphosphate accumulating organisms (PAOs) had a higher affinity towards DO. This study, for the first time, showed that the mainstream recovery of P is feasible using a SNDPR process.


Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Chemosphere ; 220: 314-323, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30590297

RESUMO

Nitrogenous classes of disinfection by-products (DBPs), such as haloacetamides (HAAms), haloacetonitriles (HANs) and halonitromethanes (HNMs), while generally present at lower concentrations in disinfected waters than carbonaceous DBPs, such as trihalomethanes or haloacetic acids, have been shown to be more detrimental to human health. While several methods have been shown to be suitable for the analysis of some nitrogenous DBPs (N-DBPs) in disinfected waters, many are unable to quantify HAAms, the most detrimental to health of these three N-DBP classes. Here, we report the first method for the simultaneous analysis of twenty-five N-DBPs (nine HANs, nine HNMs and seven HAAms) in disinfected waters using liquid-liquid extraction followed by gas chromatography-mass spectrometry. The use of a programmable temperature vaporiser injector minimises degradation of the thermally labile HNMs, while avoiding the concomitant decreases in HANs and HAAms which occur when using lower injector temperatures. Extraction parameters, including sample pH, solvent volume, salt addition and sample pre-concentration, were investigated to determine the optimal conditions across all target N-DBPs. Good detection limits were achieved for all analytes (0.8-1.7 µg L-1) and both laboratory and instrumental runtimes were significantly reduced compared to previous methods. The method was validated for the analysis of N-DBPs in drinking, swimming pool and spa waters, and concentrations of up to 41 µg L-1 of some N-DBPs were measured in some pools.


Assuntos
Acetamidas/análise , Acetonitrilas/análise , Etano/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitrocompostos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfetantes/química , Desinfecção/métodos , Etano/análise , Halogenação , Humanos
5.
J Environ Manage ; 228: 393-404, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243075

RESUMO

Stormwater runoff transports contaminants, including gross pollutants (GPs) accumulated on surfaces to nearby receiving water bodies. These may clog storm drainage systems, seal side entry pits and increase dissolved pollutants in receiving water bodies. Best management practices (BMPs) such as oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are implemented to reduce stormwater pollutants in urban runoff. However, the information on physicochemical characteristics of the pollutants are still few in literature but important to improve the design of BMPs, considering qualitative aspects, and their operation. CBIs are devices used to remove GPs at source without requiring any extra land use because they are typically mounted within a catch basin (e.g. side entry pit) or existing drain. In this study, improvement of stormwater quality was investigated at two different sites (Subiaco, a residential area and Hillarys Boat Harbour, a commercial-marine-recreational area; Western Australia) where a new CBI made of non-woven polypropylene geotextile was installed in side entry pits to capture GPs at source. Influent and effluent water from the CBIs was collected and analyzed for BOD, COD, TSS and PO4-P with maximum improvements in water quality of 90%, 88%, 88% and 26% respectively. The heavy metals in influent and effluent water were found very low and below the guideline values. Analysis of particle size distribution, specific surface area of solids, SEM images and heavy metal content (Cu, Fe, Ni, Pb, Zn, Cd) in solids showed that the residential area contained more finer particles than the commercial area but that solids in the commercial area contained greater concentrations of heavy metals than those from the residential area. The specific surface area was found to be higher in the residential area and particles were thought to be largely sourced from traffic. However, these characteristics may be monitored for longer term for more CBIs installed in different locations.


Assuntos
Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Lagoas , Chuva , Movimentos da Água , Poluentes Químicos da Água/análise , Qualidade da Água , Austrália Ocidental
6.
Water Res ; 138: 152-159, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29587151

RESUMO

Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag+), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production.


Assuntos
Brometos/química , Carbono/química , Compostos de Prata/química , Prata/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Desinfecção/métodos , Halogenação , Concentração de Íons de Hidrogênio , Propriedades de Superfície
7.
Sci Total Environ ; 618: 1054-1063, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29108695

RESUMO

Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180µm (P1; D50:106µm) and 0-300µm (P2; D50:150µm). The results revealed that the desired stormwater TSS concentration (<30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10-5m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability.

8.
Water Environ Res ; 89(12): 2103-2112, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29166992

RESUMO

Applicability of alum addition to wastewater sludge and biosolids produced from different treatment processes was evaluated as a means of odor reduction. Four water resource recovery facilities (WRRFs) were chosen for this study: two used mesophilic anaerobic digestion and two used oxidation ditch processes. The experiments were conducted on a laboratory scale and in all cases the alum was added prior to dewatering. This is the first report of the application of alum for odor reduction in oxidation ditch processes. Alum addition was effective in reducing odors in anaerobically digested biosolids. Addition of 4% alum to anaerobically digested liquid biosolids prior to dewatering resulted in a 60% reduction in the peak odor concentration in the laboratory dewatered cake, relative to the control sample. Alum addition did not reduce odors in dewatered sludge from oxidation ditch processes.


Assuntos
Compostos de Alúmen/química , Odorantes/prevenção & controle , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
9.
J Environ Sci (China) ; 58: 340-348, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774625

RESUMO

Determination of halogen-specific total organic halogen (TOX) is vital for studies of disinfection of waters containing bromide, since total organic bromine (TOBr) is likely to be more problematic than total organic chlorine. Here, we present further halogen-specific TOX method optimisation and validation, focusing on measurement of TOBr. The optimised halogen-specific TOX method was validated based on the recovery of model compounds covering different classes of disinfection by-products (haloacetic acids, haloacetonitriles, halophenols and halogenated benzenes) and the recovery of total bromine (mass balance of TOBr and bromide concentrations) during disinfection of waters containing dissolved organic matter and bromide. The validation of a halogen-specific TOX method based on the mass balance of total bromine has not previously been reported. Very good recoveries of organic halogen from all model compounds were obtained, indicating high or complete conversion of all organic halogen in the model compound solution through to halide in the absorber solution for ion chromatography analysis. The method was also successfully applied to monitor conversion of bromide to TOBr in a groundwater treatment plant. An excellent recovery (101%) of total bromine was observed from the raw water to the post-chlorination stage. Excellent recoveries of total bromine (92%-95%) were also obtained from chlorination of a synthetic water containing dissolved organic matter and bromide, demonstrating the validity of the halogen-specific TOX method for TOBr measurement. The halogen-specific TOX method is an important tool to monitor and better understand the formation of halogenated organic compounds, in particular brominated organic compounds, in drinking water systems.


Assuntos
Bromo/análise , Poluentes Químicos da Água/análise , Brometos , Desinfetantes/análise , Desinfecção/métodos , Halogênios/análise , Compostos Orgânicos/análise , Purificação da Água/métodos
10.
Environ Sci Technol ; 51(9): 5146-5155, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28358483

RESUMO

During chlorination of bromide-containing waters, a significant formation of brominated disinfection byproducts is expected. This is of concern because Br-DBPs are generally more toxic than their chlorinated analogues. In this study, synthetic water samples containing dissolved organic matter (DOM) extracts and bromide were treated under various disinfection scenarios to elucidate the mechanisms of Br-DBP formation. The total concentration of Br-DBPs was measured as adsorbable organic bromine (AOBr). A portion of the bromine (HOBr) was found to react with DOM via electrophilic substitution (≤40%), forming AOBr, and the remaining HOBr reacted with DOM via electron transfer with a reduction of HOBr to bromide (≥60%). During chlorination, the released bromide is reoxidized (recycled) by chlorine to HOBr, leading to further electrophilic substitution of unaltered DOM sites and chlorinated DOM moieties. This leads to an almost complete bromine incorporation to DOM (≥87%). The type of DOM (3.06 ≤ SUVA254 ≤ 4.85) is not affecting this process, as long as the bromine-reactive DOM sites are in excess and a sufficient chlorine exposure is achieved. When most reactive sites were consumed by chlorine, Cl-substituted functional groups (Cl-DOM) are reacting with HOBr by direct bromination leading to Br-Cl-DOM and by bromine substitution of chlorine leading to Br-DOM. The latter finding was supported by hexachlorobenzene as a model compound from which bromoform was formed during HOBr treatment. To better understand the experimental findings, a conceptual kinetic model allowing to assess the contribution of each AOBr pathway was developed. A simulation of distribution system conditions with a disinfectant residual of 1 mgC2 L-1 showed complete conversion of Br- to AOBr, with about 10% of the AOBr formed through chlorine substitution by bromine.


Assuntos
Brometos/química , Bromo/química , Desinfecção , Halogenação , Água/química , Poluentes Químicos da Água , Purificação da Água
11.
Sci Total Environ ; 586: 76-86, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28199877

RESUMO

The accumulation of wash-off solid waste, termed gross pollutants (GPs), in drainage systems has become a major constraint for best management practices (BMPs) of stormwater. GPs should be captured at source before the material clogs the drainage network, seals the infiltration capacity of side entry pits or affects the aquatic life in receiving waters. BMPs intended to reduce stormwater pollutants include oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are used to remove GP at the source and have no extra land use requirement because they are typically mounted within a catch basin (e.g. side entry pits; grate or gully pits). In this study, a new type of CBI, recently developed by Urban Stormwater Technologies (UST) was studied for its performance at a site in Gosnells, Western Australia. This new type of CBI can capture pollutants down to particle sizes of 150µm while retaining its shape and pollutant capturing capacity for at least 1year. Data on GP and associated water samples were collected during monthly servicing of CBIs for one year. The main component of GPs was found to be vegetation (93%): its accumulation showed a strong relationship (r2=0.9) with rainfall especially during the wet season. The average accumulation of total GP load for each CBI was 384kg/ha/yr (dry mass) with the GP moisture content ranging from 24 to 52.5%. Analysis of grain sizes of GPs captured in each CBI showed similar distributions in the different CBIs. The loading rate coefficient (K) calculated from runoff and GP load showed higher K-values for CBI located near trees. The UST developed CBI in this study showed higher potential to capture GPs down to 150µm in diameter than similar CBI devices described in previous studies.

12.
Talanta ; 139: 104-10, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25882414

RESUMO

A method was optimised and evaluated for the analysis of total organic halogen (TOX) in drinking water samples. It involved adsorption of organic halogen onto activated carbon, followed by combustion of the activated carbon and adsorbed material, absorption of the resulting hydrogen halide gases in an absorbing solution, and analysis of halide ions in the solution using an on-line ion chromatograph. Careful optimisation and validation of the method resulted in significant improvements compared to previously reported methods. Method detection limits were 5µgL(-1) for TOCl (as Cl(-)), 2µgL(-1) for TOBr (as Br(-)), and 2µgL(-1) for TOI (as I(-)). Interferences with TOI measurement occurred when iodide or iodate was present in the sample at concentrations at or above 100µgL(-1) and 500µgL(-1), respectively. In general, excellent method recoveries were determined for a wide range of model compounds. The method was used to investigate the formation of halogen-specific TOX through a water treatment plant and in laboratory-scale disinfection experiments. Up to 70% of bromide in the water was converted to TOBr following disinfection at the plant. In the disinfection experiments, TOI was preferentially formed in chloraminated samples, and trihalomethanes only constituted a small fraction (≤20%) of TOX, highlighting the significant proportion of halogenated organic DBPs that are not measured regularly. This is the first report of a comprehensive assessment of the key parameters influencing the efficiency and reliability of the analysis of halogen-specific TOX in drinking water with demonstration of its applications.


Assuntos
Desinfecção/métodos , Halogênios/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Reprodutibilidade dos Testes , Abastecimento de Água
13.
Water Res ; 70: 214-23, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540835

RESUMO

Biological activated carbon (BAC) and magnetic ion exchange resin (MIEX) were used to pre-treat secondary wastewater effluent (SWWE) and assessed for their capacity to reduce fouling of a nanofiltration membrane. BAC pre-treated water facilitated a lower but a steady flux while MIEX treated water resulted in a higher but a rapidly declining flux. Their combined use increased average flux from 58 to 89%. MIEX combined with BAC, in that order, was superior in reducing membrane fouling. Measurement of average Stokes radius (m) and apparent molecular weight distribution of dissolved organic matter (DOM), by nuclear magnetic resonance (NMR) and liquid chromatography organic carbon detection (LC-OCD), respectively, revealed that the microbial activity of BAC changed the nature of organic matter, probably by increasing the size of DOM molecules. BAC generally decreased the lower apparent molecular weight (LMW) fraction of dissolved organic carbon (DOC). Hence, the removal of LMW DOC and an increase of average Stokes radius (m) of DOM appeared to be important in facilitating a longer steady flux. Specifically, the combined MIEX/BAC pre-treatments appeared to target and reduce the foulants in SWWE that are largely responsible for the reduction of flux in nanofiltration membranes.


Assuntos
Filtração/instrumentação , Resinas de Troca Iônica , Membranas Artificiais , Nanotecnologia , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Magnetismo , Poluentes Químicos da Água/química
14.
Water Res ; 59: 90-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24793107

RESUMO

The formation of disinfection by-products (DBPs) is a public health concern due to their potential adverse health effects. Robust and sensitive methods for the analysis of DBPs, as well as appropriate sample handling procedures, are essential to obtain accurate, precise and reliable data on DBP occurrence and formation. In particular, the use of an appropriate quenching agent is critical to prevent further formation of DBPs during the holding time between sample collection and analysis. Despite reports of decomposition of DBPs caused by some quenching agents, particularly sulphite and thiosulphate, a survey of the literature shows that they are still the most commonly used quenching agents in analysis of DBPs. This study investigated the effects of five quenching agents (sodium sulphite, sodium arsenite, sodium borohydride, ascorbic acid, and ammonium chloride) on the stability of seven different classes of DBPs commonly found in drinking waters, in order to determine the most appropriate quenching agent for the different classes of DBPs. All of the quenching agents tested did not adversely affect the concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs), and thus are suitable for quenching of disinfectant residual prior to analysis of these DBPs. Ascorbic acid was found to be suitable for the analysis of haloacetonitriles (HANs) and haloketones (HKs), but should not be used for the analysis of chlorite. Sodium arsenite, sodium borohydride, and ascorbic acid were all acceptable for the analysis of haloacetaldehydes (HALs). All of the quenching agents tested adversely affected the concentration of chloropicrin. A 'universal' quenching agent, suitable for all groups of DBPs studied, was not identified. However, based on the results of this study, we recommend the use of ascorbic acid for quenching of samples to be analysed for organic DBPs (i.e. THMs, HAAs, HANs, HKs, and HALs) and sodium sulphite for analysis of inorganic DBPs. Our study is the first comprehensive study on the effects of quenching agents on the stability of DBPs involving a wide range of DBP classes and quenching agents.


Assuntos
Desinfetantes/química , Poluentes Químicos da Água/química , Água/química , Cloreto de Amônio/química , Arsenitos/química , Ácido Ascórbico/química , Boroidretos/química , Desinfecção/métodos , Água Potável , Monitoramento Ambiental/métodos , Sensibilidade e Especificidade , Compostos de Sódio/química , Sulfitos/química , Trialometanos/química , Abastecimento de Água/normas
15.
Water Sci Technol ; 68(12): 2552-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24355840

RESUMO

This study investigated sources of odours from biosolids produced from a Western Australian wastewater treatment plant and examined possible strategies for odour reduction, specifically chemical additions and reduction of centrifuge speed on a laboratory scale. To identify the odorous compounds and assess the effectiveness of the odour reduction measures trialled in this study, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS SPME-GC-MS) methods were developed. The target odour compounds included volatile sulphur compounds (e.g. dimethyl sulphide, dimethyl disulphide and dimethyl trisulphide) and other volatile organic compounds (e.g. toluene, ethylbenzene, styrene, p-cresol, indole and skatole). In our laboratory trials, aluminium sulphate added to anaerobically digested sludge prior to dewatering offered the best odour reduction strategy amongst the options that were investigated, resulting in approximately 40% reduction in the maximum concentration of the total volatile organic sulphur compounds, relative to control.


Assuntos
Odorantes , Eliminação de Resíduos/métodos , Esgotos/microbiologia , Resíduos Sólidos/análise , Águas Residuárias/microbiologia , Purificação da Água/métodos , Hidrocarbonetos/análise , Odorantes/análise , Odorantes/prevenção & controle , Esgotos/química , Sulfetos/análise , Volatilização , Águas Residuárias/química
16.
Sci Total Environ ; 454-455: 88-98, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23542482

RESUMO

The biostability concept has been successfully used to predict the onset of nitrification in drinking water distribution systems, but in certain cases deficiencies have been observed in the predictions, indicating that modifications to parameters were needed. At the biostable disinfectant residual concentration (BRC), the rate of ammonia-oxidising bacterial (AOB) growth due to the substrate (free ammonia) and the rate of inactivation due to the disinfectant are balanced. Growth and inactivation rates vary greatly with temperature, but temperature is yet to be considered in the biostability equation. In this paper, two separate novel models are proposed which take into account the temperature effects on the biostability equation. First, a novel model of specific growth rate variability with temperature was shown to be valid for different bacterial species. Then, the biostability model was modified and validated for ammonia-oxidising bacterial activity using data collected from laboratory and full-scale distribution systems. The proposed model has two important uses: while the specific growth rate model and biostability model can be widely adopted for many microbes, the biostability model for AOB also has the potential to aid water utilities in disinfectant residual management throughout yearly temperature variations.


Assuntos
Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Cloraminas/metabolismo , Desinfetantes/metabolismo , Purificação da Água/métodos , Aminação , Modelos Biológicos , Oxirredução , Temperatura , Austrália Ocidental
17.
Water Res ; 47(2): 535-46, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23164216

RESUMO

N-Nitrosamines are a class of disinfection by-products (DBPs) that have been reported to be more toxic than the most commonly detected and regulated DBPs. Only a few studies investigating the formation of N-nitrosamines from disinfection of natural waters have been reported, and little is known about the role of natural organic matter (NOM) and the effects of its nature and reactivity on the formation of N-nitrosamines. This study investigated the influence of the molecular weight (MW) characteristics of NOM on the formation of eight species of N-nitrosamines from chlorination and chloramination, and is the first to report on the formation of eight N-nitrosamines from chlorination and chloramination of MW fractions of NOM. Isolated NOM from three different source waters in Western Australia was fractionated into several apparent MW (AMW) fractions using preparative-scale high performance size exclusion chromatography. These AMW fractions of NOM were then treated with chlorine or chloramine, and analysed for eight species of N-nitrosamines. Among these N-nitrosamines, N-nitrosodimethylamine (NDMA) was the most frequently detected. All AMW fractions of NOM produced N-nitrosamines upon chlorination and chloramination. Regardless of AMW characteristics, chloramination demonstrated a higher potential to form N-nitrosamines than chlorination, and a higher frequency of detection of the N-nitrosamines species was also observed in chloramination. The results showed that inorganic nitrogen may play an important role in the formation of N-nitrosamines, while organic nitrogen is not necessarily a good indicator for their formation. Since chlorination has less potential to form N-nitrosamines, chloramination in pre-chlorination mode was recommended to minimise the formation of N-nitrosamines. There was no clear trend in the formation of N-nitrosamines from chlorination of AMW fractions of NOM. However, during chloramination, NOM fractions with AMW <2.5 kDa were found to produce higher concentrations of NDMA and total N-nitrosamines. The precursor materials of N-nitrosamines appeared to be more abundant in the low to medium MW fractions of NOM, which correspond to the fractions that are most difficult to remove using conventional drinking water treatment processes. Alternative or advanced treatment processes that target the removal of low to medium MW NOM including activated carbon adsorption, biofiltration, reverse osmosis, and nanofiltration, can be employed to minimise the formation of N-nitrosamines.


Assuntos
Substâncias Húmicas/análise , Nitrosaminas/análise , Poluentes Químicos da Água/análise , Purificação da Água , Recursos Hídricos/análise , Abastecimento de Água/análise , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Dimetilnitrosamina/isolamento & purificação , Halogenação , Peso Molecular , Nitrosaminas/química , Nitrosaminas/isolamento & purificação , Extração em Fase Sólida , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Qualidade da Água , Austrália Ocidental
18.
Environ Sci Technol ; 46(18): 10317-25, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22873573

RESUMO

Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.


Assuntos
Desinfetantes/química , Desinfetantes/toxicidade , Água Potável/análise , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/toxicidade , Adsorção , Austrália , Linhagem Celular Tumoral , Desinfecção/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Halogenação , Humanos
19.
Environ Sci Technol ; 46(13): 7350-7, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22667818

RESUMO

The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 µg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 µg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.


Assuntos
Brometos/química , Iodatos/química , Iodetos/química , Trialometanos/química , Poluentes Químicos da Água/química , Purificação da Água , Água/análise , Halogenação , Cinética , Oxirredução
20.
J Chromatogr A ; 1241: 117-22, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22554415

RESUMO

Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water.


Assuntos
Acetamidas/análise , Água Potável/química , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Clorados/análise , Metano/análogos & derivados , Nitrocompostos/análise , Acetamidas/química , Austrália , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Bromados/química , Hidrocarbonetos Clorados/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Metano/análise , Nitrocompostos/química , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA