Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710020

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Assuntos
Lista de Checagem , Editoração , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Microscopia
3.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135686

RESUMO

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Assuntos
Lesões Encefálicas , COVID-19 , Humanos , Seguimentos , Citocinas , COVID-19/complicações , Soroterapia para COVID-19 , Autoanticorpos , Mediadores da Inflamação , Biomarcadores , Proteína Glial Fibrilar Ácida
4.
J Physiol ; 601(17): 3739-3764, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37428651

RESUMO

Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 µm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.


Assuntos
Calmodulina , Síndrome do QT Longo , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Cálcio/metabolismo , Células HEK293 , Síndrome do QT Longo/genética , Mutação , Canal de Potássio KCNQ1/genética
5.
ArXiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824427

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

6.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34888671

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.


Assuntos
Calmodulina , Taquicardia Ventricular , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Células HEK293 , Humanos
7.
Proc Natl Acad Sci U S A ; 116(27): 13543-13552, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213536

RESUMO

Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.


Assuntos
Hifas/crescimento & desenvolvimento , Neurospora crassa/crescimento & desenvolvimento , Meio Ambiente , Hifas/fisiologia , Microtúbulos/fisiologia , Neurospora crassa/fisiologia , Imagem Óptica , Imagem com Lapso de Tempo
9.
PLoS One ; 13(7): e0199918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048451

RESUMO

Screening cells for their differentiation potential requires a combination of tissue culture models and imaging methods that allow for long-term tracking of the location and function of cells. Embryonic kidney re-aggregation in vitro assays have been established which allow for the monitoring of organotypic cell behaviour in re-aggregated and chimeric renal organoids. However, evaluation of cell integration is hampered by the high photonic load of standard fluorescence microscopy which poses challenges for imaging three-dimensional systems in real-time over a time course. Therefore, we employed light sheet microscopy, a technique that vastly reduces photobleaching and phototoxic effects. We have also developed a new method for culturing the re-aggregates which involves immersed culture, generating organoids which more closely reflect development in vivo. To facilitate imaging from various angles, we embedded the organoids in a freely rotatable hydrogel cylinder. Endpoint fixing and staining were performed to provide additional biomolecular information. We succeeded in imaging labelled cells within re-aggregated kidney organoids over 15 hours and tracking their fate while simultaneously monitoring the development of organotypic morphological structures. Our results show that Wt1-expressing embryonic kidney cells obtained from transgenic mice could integrate into re-aggregated chimeric kidney organoids and contribute to developing nephrons. Furthermore, the nascent proximal tubules that formed in the re-aggregated tissues using the new culture method displayed secretory function, as evidenced by their ability to secrete an organic anion mimic into the tubular lumen.


Assuntos
Rim/citologia , Organoides/citologia , Análise de Célula Única/métodos , Animais , Células Cultivadas , Feminino , Rim/embriologia , Camundongos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Análise de Célula Única/instrumentação
10.
Immun Inflamm Dis ; 5(1): 45-56, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250924

RESUMO

INTRODUCTION: The epithelial and endothelial barriers of the airway mucosa are critical for regulation of tissue homeostasis and protection against pathogens or other tissue damaging agents. In response to a viral infection, epithelial cells must signal to the endothelium to initiate immune cell recruitment. This is a highly temporal regulated process; however, the mechanisms of this cross-talk are not fully understood. METHODS: In a close-contact co-culture model of human airway epithelial and endothelial cells, cellular crosstalk was analyzed using transepithelial electrical resistance (TER) measurements, immunofluorescence, electron microscopy, and ELISA. Viral infections were simulated by exposing airway epithelial cells apically to double-stranded RNA (Poly(I:C)). Using a microfluidic culture system, the temporal release of mediators was analyzed in the co-culture model. RESULTS: Within 4 h of challenge, double-stranded RNA induced the release of TNF-α by epithelial cells. This activated endothelial cells by triggering the release of the chemoattractant CX3CL1 (fractalkine) by 8 h post-challenge and expression of adhesion molecules E-selectin and ICAM-1. These responses were significantly reduced by neutralising TNF-α. CONCLUSION: By facilitating kinetic profiling, the microfluidic co-culture system has enabled identification of a key signaling mechanism between the epithelial and endothelial barriers. Better understanding of cell-cell cross-talk and its regulatory mechanisms has the potential to identify new therapeutic strategies to control airway inflammation.


Assuntos
Comunicação Celular , Células Epiteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Brônquios/citologia , Linhagem Celular , Células Cultivadas , Quimiocina CX3CL1/metabolismo , Técnicas de Cocultura , Selectina E/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Microfluídica , Poli I-C/farmacologia , RNA de Cadeia Dupla/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
11.
ACS Nano ; 10(7): 7106-16, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27308890

RESUMO

Gold nanorods are excellent contrast agents for imaging technologies which rely on near-infrared absorption such as photoacoustic imaging. For cell tracking applications, the cells of interest are labeled with the contrast agent prior to injection. However, after uptake into cells by endocytosis, the confinement and high concentration in endosomes leads to plasmon band broadening and reduced absorbance. This would limit the potential of multispectral optoacoustic tomography in terms of spectral processing and, consequently, sensitivity. Here, we show that steric hindrance provided by silica coating of the nanorods leads to the preservation of their spectral properties and improved photoacoustic sensitivity. This strategy allowed the detection and monitoring of as few as 2 × 10(4) mesenchymal stem cells in mice over a period of 15 days with a high spatial resolution. Importantly, the silica-coated nanorods did not affect the viability or differentiation potential of the transplanted mesenchymal stem cells.


Assuntos
Ouro , Nanotubos , Técnicas Fotoacústicas , Células-Tronco , Animais , Camundongos , Dióxido de Silício , Análise Espectral , Tomografia
12.
ACS Nano ; 10(2): 2277-86, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26812588

RESUMO

Assembly of nanoparticles into supracrystals provides a class of materials with interesting optical and magnetic properties. However, supracrystals are mostly obtained from hydrophobic particles and therefore cannot be manipulated in aqueous systems, limiting their range of applications. Here, we show that hydrophobic-shaped supracrystals self-assembled from 8.2 nm cobalt nanoparticles can be dispersed in water by coating the supracrystals with lipid vesicles. A careful characterization of these composite objects provides insights into their structure at different length scales. This composite, suspended in water, retains the crystalline structure and paramagnetic properties of the starting material, which can be moved with an applied magnetic field.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Nanopartículas Metálicas/química , Cobalto/química , Ácido Oleico/química , Fosfolipídeos/química
13.
PLoS One ; 10(10): e0139872, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436734

RESUMO

The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL-8 release is detectable within the first 2h and peaks at 4-6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.


Assuntos
Células Epiteliais/citologia , Microfluídica , Sistema Respiratório/citologia , Humanos , Técnicas In Vitro
14.
Fungal Biol ; 115(6): 493-505, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21640314

RESUMO

Despite occupying physically and chemically heterogeneous natural environments, the growth dynamics of filamentous fungi is typically studied on the surface of homogeneous laboratory media. Fungal exploration and exploitation of complex natural environments requires optimal survival and growth strategies at the colony, hyphal, and intra hyphal level, with hyphal space-searching strategies playing a central role. We describe a new methodology for the characterisation and analysis of hyphal space-searching strategies, which uses purposefully designed three-dimensional microfluidics structures mimicking some of the characteristics of natural environments of the fungi. We also demonstrate this new methodology by running a comparative examination of two Neurospora crassa strains, i.e., the wild type of N. crassa -- a commonly used model organism for the study of filamentous fungi -- and the N. crassa ro-1 mutant strain -- which is deficient in hyphal and mycelial growth. Continuous live imaging showed that both strains responded actively to the geometrically confined microstructured environments without any detectable temporal delay or spatial adjustment. While both strains navigated the test structures exhibiting similar geometry-induced space-searching mechanisms, they presented fundamentally different growth patterns that could not be observed on geometrically unconfined, flat agar surfaces.


Assuntos
Hifas/crescimento & desenvolvimento , Microfluídica/métodos , Neurospora crassa/crescimento & desenvolvimento , Hifas/genética , Microfluídica/instrumentação , Neurospora crassa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA