Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Lung Cancer ; 118: 148-154, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29571994

RESUMO

OBJECTIVES: Small cell lung cancer (SCLC) patients of all stages are treated with etoposide and cisplatin or carboplatin with or without surgery or chest radiotherapy. Initial response rates are ≥70% however the majority of patients relapse and are resistant to additional therapies due to pan-resistance to these salvage therapies. Therefore, new treatments are urgently needed. The non-taxane microtubule inhibitor eribulin has produced responses in heavily pretreated breast cancer patients. We evaluated the efficacy of eribulin alone and in combination with radiation in a panel of SCLC cell lines established from patients prior to or after receiving chemotherapy and or radiation. MATERIAL AND METHODS: Growth inhibition by eribulin alone, radiation alone and the combination was assessed by MTS assay and clonogenic survival. Eribulin induced cell cycle arrest was evaluated by FACS. Apoptosis was evaluated by using the Caspase-GLO 3/7 luminescent plate assay and by the Vybrant apoptosis assay with analysis by FACS. RESULTS: Eribulin mesylate inhibited the growth of all 17-SCLC lines at concentrations of ≤10 nM which is a clinically achievable dose. Growth inhibition was not significantly different between cell lines established prior to or after chemotherapy (p = .5). Concurrent eribulin + radiation induced a greater G2-M arrest, an increase in apoptotic cells and increased growth inhibition over radiation alone. CONCLUSIONS: Eribulin was highly active alone and in combination with radiation in treatment naïve SCLC lines and lines established from previously treated patients. In vivo pre-clinical studies of eribulin alone and in combination with radiation should be considered in SCLC cell lines.


Assuntos
Antineoplásicos/uso terapêutico , Furanos/uso terapêutico , Cetonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Moduladores de Tubulina/uso terapêutico , Apoptose , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/radioterapia
2.
Clin Cancer Res ; 23(6): 1531-1541, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27663586

RESUMO

Purpose: The emergence of EGFR inhibitors such as gefitinib, erlotinib, and osimertinib has provided novel treatment opportunities in EGFR-driven non-small cell lung cancer (NSCLC). However, most patients with EGFR-driven cancers treated with these inhibitors eventually relapse. Recent efforts have identified the canonical Wnt pathway as a mechanism of protection from EGFR inhibition and that inhibiting tankyrase, a key player in this pathway, is a potential therapeutic strategy for the treatment of EGFR-driven tumors.Experimental Design: We performed a preclinical evaluation of tankyrase inhibitor AZ1366 in combination with multiple EGFR-inhibitors across NSCLC lines, characterizing its antitumor activity, impingement on canonical Wnt signaling, and effects on gene expression. We performed pharmacokinetic and pharmacodynamic profiling of AZ1366 in mice and evaluated its therapeutic activity in an orthotopic NSCLC model.Results: In combination with EGFR inhibitors, AZ1366 synergistically suppressed proliferation of multiple NSCLC lines and amplified global transcriptional changes brought about by EGFR inhibition. Its ability to work synergistically with EGFR inhibition coincided with its ability to modulate the canonical Wnt pathway. Pharmacokinetic and pharmacodynamic profiling of AZ1366-treated orthotopic tumors demonstrated clinically relevant serum drug levels and intratumoral target inhibition. Finally, coadministration of an EGFR inhibitor and AZ1366 provided better tumor control and improved survival for Wnt-responsive lung cancers in an orthotopic mouse model.Conclusions: Tankyrase inhibition is a potent route of tumor control in EGFR-dependent NSCLC with confirmed dependence on canonical Wnt signaling. These data strongly support further evaluation of tankyrase inhibition as a cotreatment strategy with EGFR inhibition in an identifiable subset of EGFR-driven NSCLC. Clin Cancer Res; 23(6); 1531-41. ©2016 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Tanquirases/antagonistas & inibidores , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Gefitinibe , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Quinazolinas/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 15(10): 2314-2322, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27496133

RESUMO

Small-cell lung cancer (SCLC) cells have rapid proliferation, universal Rb inactivation, and high rates of MYC family amplification, making aurora kinase inhibition a natural target. Preclinical studies have demonstrated activity for Aurora A and pan-Aurora inhibitors with some relationship to MYC family expression. A clinical trial showed activity for an Aurora kinase A inhibitor, but no biomarkers were evaluated. We screened a panel of 23 SCLC lines with and without MYC family gene amplification or high MYC family gene expression for growth inhibition by the highly potent, selective aurora kinase B inhibitor barasertib. Nine of the SCLC lines were very sensitive to growth inhibition by barasertib, with IC50 values of <50 nmol/L and >75% growth inhibition at 100 nmol/L. Growth inhibition correlated with cMYC amplification (P = 0.018) and cMYC gene expression (P = 0.026). Sensitive cell lines were also enriched in a published MYC gene signature (P = 0.042). In vivo, barasertib inhibited the growth of xenografts established from an SCLC line that had high cMYC gene expression, no cMYC amplification, and was positive for the core MYC gene signature. Our studies suggest that SCLC tumors with cMYC amplification/high gene expression will frequently respond to Aurora B inhibitors and that clinical studies coupled with predictive biomarkers are indicated. Mol Cancer Ther; 15(10); 2314-22. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase B/metabolismo , Organofosfatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Amplificação de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação , Poliploidia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 20(12): 3299-309, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771645

RESUMO

PURPOSE: FGFR1 gene copy number (GCN) is being evaluated as a biomarker for FGFR tyrosine kinase inhibitor (TKI) response in squamous cell lung cancers (SCC). The exclusive use of FGFR1 GCN for predicting FGFR TKI sensitivity assumes increased GCN is the only mechanism for biologically relevant increases in FGFR1 signaling. Herein, we tested whether FGFR1 mRNA and protein expression may serve as better biomarkers of FGFR TKI sensitivity in lung cancer. EXPERIMENTAL DESIGN: Histologically diverse lung cancer cell lines were submitted to assays for ponatinib sensitivity, a potent FGFR TKI. A tissue microarray composed of resected lung tumors was submitted to FGFR1 GCN, and mRNA analyses and the results were validated with The Cancer Genome Atlas (TCGA) lung cancer data. RESULTS: Among 58 cell lines, 14 exhibited ponatinib sensitivity (IC50 values ≤ 50 nmol/L) that correlated with FGFR1 mRNA and protein expression, but not with FGFR1 GCN or histology. Moreover, ponatinib sensitivity associated with mRNA expression of the ligands, FGF2 and FGF9. In resected tumors, 22% of adenocarcinomas and 28% of SCCs expressed high FGFR1 mRNA. Importantly, only 46% of SCCs with increased FGFR1 GCN expressed high mRNA. Lung cancer TCGA data validated these findings and unveiled overlap of FGFR1 mRNA positivity with KRAS and PIK3CA mutations. CONCLUSIONS: FGFR1 dependency is frequent across various lung cancer histologies, and FGFR1 mRNA may serve as a better biomarker of FGFR TKI response in lung cancer than FGFR1 GCN. The study provides important and timely insight into clinical testing of FGFR TKIs in lung cancer and other solid tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Dosagem de Genes , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Estudos de Coortes , Seguimentos , Amplificação de Genes , Humanos , Imidazóis/farmacologia , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estadiamento de Neoplasias , Piridazinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas
5.
Cancer Res ; 72(16): 4154-64, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738915

RESUMO

Lung cancer is the leading cause of death worldwide. Adenocarcinomas, the most common histologic subtype of non-small cell lung cancer (NSCLC), are frequently associated with activating mutations in the epidermal growth factor receptor (EGFR) gene. Although these patients often respond clinically to the EGFR tyrosine kinase inhibitors erlotinib and gefitinib, relapse inevitably occurs, suggesting the development of escape mechanisms that promote cell survival. Using a loss-of-function, whole genome short hairpin RNA (shRNA) screen, we identified that the canonical Wnt pathway contributes to the maintenance of NSCLC cells during EGFR inhibition, particularly the poly-ADP-ribosylating enzymes tankyrase 1 and 2 that positively regulate canonical Wnt signaling. Inhibition of tankyrase and various other components of the Wnt pathway with shRNAs or small molecules significantly increased the efficacy of EGFR inhibitors both in vitro and in vivo. Our findings therefore reveal a critical role for tankyrase and the canonical Wnt pathway in maintaining lung cancer cells during EGFR inhibition. Targeting the Wnt-tankyrase-ß-catenin pathway together with EGFR inhibition may improve clinical outcome in patients with NSCLC.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tanquirases/metabolismo , Proteínas Wnt/metabolismo , Adenocarcinoma Bronquioloalveolar/tratamento farmacológico , Adenocarcinoma Bronquioloalveolar/enzimologia , Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma Bronquioloalveolar/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Quinazolinas/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Lett ; 300(1): 66-78, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20980099

RESUMO

The epithelial to mesenchymal transition (EMT) is a developmental process enabling epithelial cells to gain a migratory mesenchymal phenotype. In cancer, this process contributes to metastases; however the regulatory signals and mechanistic details are not fully elucidated. Here, we sought to identify the subset of genes regulated in lung cancer by ZEB1, an E-box transcriptional repressor known to induce EMT. Using an Affymetrix-based expression database of 38 non-small cell lung cancer (NSCLC) cell lines, we identified 324 genes that correlated negatively with ZEB1 and 142 that were positively correlated. A mesenchymal gene pattern (low E-cadherin, high Vimentin or N-cadherin) was significantly associated with ZEB1 and ZEB2, but not with Snail, Slug, Twist1 or Twist2. Among eight genes selected for validation, seven were confirmed to correlate with ZEB1 by quantitative real-time RT-PCR in a series of 22 NSCLC cell lines, either negatively (CDS1, EpCAM, ESRP1, ESRP2, ST14) or positively (FGFR1, Vimentin). In addition, over-expression or knockdown of ZEB1 led to corresponding changes in gene expression, demonstrating that these genes are also regulated by ZEB1, either directly or indirectly. Of note, the combined knockdown of ZEB1 and ZEB2 led to apparent synergistic responses in gene expression. Furthermore, these responses were not restricted to artificial settings, since most genes were similarly regulated during a physiologic induction of EMT by TGF-ß plus EGF. Finally, the absence of ST14 (matriptase) was linked to ZEB1 positivity in lung cancer tissue microarrays, implying that the regulation observed in vitro applies to the human disease. In summary, this study identifies a new set of ZEB-regulated genes in human lung cancer cells and supports the hypothesis that ZEB1 and ZEB2 are key regulators of the EMT process in this disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Homeodomínio/fisiologia , Neoplasias Pulmonares/patologia , Fatores de Transcrição/fisiologia , Western Blotting , Caderinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas Repressoras/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/análise , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
7.
PLoS One ; 5(11): e14117, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21152424

RESUMO

Despite initial and sometimes dramatic responses of specific NSCLC tumors to EGFR TKIs, nearly all will develop resistance and relapse. Gene expression analysis of NSCLC cell lines treated with the EGFR TKI, gefitinib, revealed increased levels of FGFR2 and FGFR3 mRNA. Analysis of gefitinib action on a larger panel of NSCLC cell lines verified that FGFR2 and FGFR3 expression is increased at the mRNA and protein level in NSCLC cell lines in which the EGFR is dominant for growth signaling, but not in cell lines where EGFR signaling is absent. A luciferase reporter containing 2.5 kilobases of fgfr2 5' flanking sequence was activated after gefitinib treatment, indicating transcriptional regulation as a contributing mechanism controlling increased FGFR2 expression. Induction of FGFR2 and FGFR3 protein as well as fgfr2-luc activity was also observed with Erbitux, an EGFR-specific monoclonal antibody. Moreover, inhibitors of c-Src and MEK stimulated fgfr2-luc activity to a similar degree as gefitinib, suggesting that these pathways may mediate EGFR-dependent repression of FGFR2 and FGFR3. Importantly, our studies demonstrate that EGFR TKI-induced FGFR2 and FGFR3 are capable of mediating FGF2 and FGF7 stimulated ERK activation as well as FGF-stimulated transformed growth in the setting of EGFR TKIs. In conclusion, this study highlights EGFR TKI-induced FGFR2 and FGFR3 signaling as a novel and rapid mechanism of acquired resistance to EGFR TKIs and suggests that treatment of NSCLC patients with combinations of EGFR and FGFR specific TKIs may be a strategy to enhance efficacy of single EGFR inhibitors.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gefitinibe , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
8.
Mol Pharmacol ; 75(1): 196-207, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18849352

RESUMO

Despite widespread expression of epidermal growth factor (EGF) receptors (EGFRs) and EGF family ligands in non-small-cell lung cancer (NSCLC), EGFR-specific tyrosine kinase inhibitors (TKIs) such as gefitinib exhibit limited activity in this cancer. We propose that autocrine growth signaling pathways distinct from EGFR are active in NSCLC cells. To this end, gene expression profiling revealed frequent coexpression of specific fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in NSCLC cell lines. It is noteworthy that FGF2 and FGF9 as well as FGFR1 IIIc and/or FGFR2 IIIc mRNA and protein are frequently coexpressed in NSCLC cell lines, especially those that are insensitive to gefitinib. Specific silencing of FGF2 reduced anchorage-independent growth of two independent NSCLC cell lines that secrete FGF2 and coexpress FGFR1 IIIc and/or FGFR2 IIIc. Moreover, a TKI [(+/-)-1-(anti-3-hydroxy-cyclopentyl)-3-(4-methoxy-phenyl)-7-phenylamino-3,4-dihydro-1H-pyrimido-[4,5-d]pyrimidin-2-one (RO4383596)] that targets FGFRs inhibited basal FRS2 and extracellular signal-regulated kinase phosphorylation, two measures of FGFR activity, as well as proliferation and anchorage-independent growth of NSCLC cell lines that coexpress FGF2 or FGF9 and FGFRs. By contrast, RO4383596 influenced neither signal transduction nor growth of NSCLC cell lines lacking FGF2, FGF9, FGFR1, or FGFR2 expression. Thus, FGF2, FGF9 and their respective high-affinity FGFRs comprise a growth factor autocrine loop that is active in a subset of gefitinib-insensitive NSCLC cell lines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Pulmonares/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Fatores de Crescimento de Fibroblastos/genética , Humanos , RNA Interferente Pequeno/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética
9.
Mol Cancer Ther ; 6(6): 1683-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17541031

RESUMO

The modest response of patients with head and neck squamous cell carcinoma (HNSCC) and non-small cell lung carcinoma (NSCLC) to epithelial growth factor receptor tyrosine kinase inhibitors such as gefitinib and erlotinib indicates the need for the development of biomarkers to predict response. We determined gefitinib sensitivity in a panel of HNSCC cell lines by a 5-day 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and confirmed these responses with analysis of downstream signaling by immunoblotting and cell cycle arrest. Basal gene expression profiles were then determined by microarray analysis and correlated with gefitinib response. These data were combined with previously reported NSCLC microarray results to generate a broader predictive index. Common markers of resistance between the two tumor types included genes associated with the epithelial to mesenchymal transition. We confirmed that increased protein expression of vimentin combined with the loss of E-cadherin, claudin 4, and claudin 7 by immunoblotting was associated with gefitinib resistance in both HNSCC and NSCLC cell lines. In addition, the loss of the Ca(2+)-independent cell-cell adhesion molecules EpCAM and TROP2 in resistant lines was confirmed by immunofluorescence. Tumor xenografts derived from the gefitinib-sensitive UM-SCC-2 were growth-delayed by gefitinib, whereas the gefitinib-resistant 1483 xenografts were unaffected. These data support a role for epithelial to mesenchymal transition in establishing gefitinib resistance for both HNSCC and NSCLC, and indicate that clinical trials should address whether these biomarkers will be useful for patient selection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Resistencia a Medicamentos Antineoplásicos , Células Epiteliais/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Pulmonares/patologia , Mesoderma/patologia , Quinazolinas/farmacologia , Animais , Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Gefitinibe , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos
10.
Clin Cancer Res ; 12(23): 7117-25, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17145836

RESUMO

PURPOSE: Recognition that the epidermal growth factor receptor (EGFR) was a therapeutic target in non-small cell lung cancer (NSCLC) and other cancers led to development of the small-molecule receptor tyrosine kinase inhibitors gefitinib and erlotinib. Clinical trials established that EGFR tyrosine kinase inhibitors produced objective responses in a minority of NSCLC patients. We examined the sensitivity of 23 NSCLC lines with wild-type or mutated EGFR to gefitinib to determine genes/proteins related to sensitivity, including EGFR and HER2 cell surface expression, phosphorylated EGFR expression, EGFR gene copy number, and EGFR mutational status. Downstream cell cycle and signaling events were compared with growth-inhibitory effects. EXPERIMENTAL DESIGN: We determined gefitinib sensitivity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, EGFR expression by fluorescence-activated cell sorting and immunohistochemistry, phosphorylated EGFR by Western blotting, EGFR gene copy number by fluorescence in situ hybridization, and EGFR mutation by sequencing. The cellular effects of gefitinib on cell cycle were determined by flow cytometry and the molecular effects of gefitinib EGFR inhibition on downstream signal proteins by Western blotting. Gefitinib in vivo effects were evaluated in athymic nude mice bearing sensitive and resistant NSCLC xenografts. RESULTS: There was a significant correlation between EGFR gene copy number, EGFR gene mutations, and gefitinib sensitivity. EGFR protein was necessary but not sufficient for predicting sensitivity. Gefitinib-sensitive lines showed a G(1) cell cycle arrest and inactivation of downstream signaling proteins; resistant cell lines had no changes. The in vivo effects mirrored the in vitro effects. CONCLUSIONS: This panel of NSCLC lines characterized for gefitinib response was used to identify predictive molecular markers of response to gefitinib. Several of these have subsequently been shown to identify NSCLC patients likely to benefit from gefitinib therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/análise , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Citometria de Fluxo , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/enzimologia , Masculino , Camundongos , Camundongos Nus , Mutação , Valor Preditivo dos Testes , Quinazolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Transplante Heterólogo
11.
Mol Cancer Res ; 4(8): 521-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16877703

RESUMO

Tyrosine kinase inhibitors (TKI) of the epidermal growth factor receptor (EGFR) produce objective responses in a minority of patients with advanced-stage non-small cell lung cancer (NSCLC), and about half of all treated patients progress within 6 weeks of instituting therapy. Because the target of these agents is known, it should be possible to develop biological predictors of response, but EGFR protein levels have not been proven useful as a predictor of TKI response in patients and the mechanism of primary resistance is unclear. We used microarray gene expression profiling to uncover a pattern of gene expression associated with sensitivity to EGFR-TKIs by comparing NSCLC cell lines that were either highly sensitive or highly resistant to gefitinib. This sensitivity-associated expression profile was used to predict gefitinib sensitivity in a panel of NSCLC cell lines with known gene expression profiles but unknown gefitinib sensitivity. Gefitinib sensitivity was then determined for members of this test panel, and the microarray-based sensitivity prediction was correct in eight of nine NSCLC cell lines. Gene and protein expression differences were confirmed with a combination of quantitative reverse transcription-PCR, flow cytometry, and immunohistochemistry. This gene expression pattern related to gefitinib sensitivity was independent from sensitivity associated with EGFR mutations. Several genes associated with sensitivity encode proteins involved in HER pathway signaling or pathways that interrelate to the HER signaling pathway. Some of these genes could be targets of pharmacologic interventions to overcome primary resistance.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/uso terapêutico , Caderinas/metabolismo , Análise por Conglomerados , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/genética , Citometria de Fluxo/métodos , Gefitinibe , Expressão Gênica , Perfilação da Expressão Gênica/classificação , Humanos , Concentração Inibidora 50 , Família Multigênica , Mutação/efeitos dos fármacos , Reação em Cadeia da Polimerase/métodos , Inibidores de Proteínas Quinases , Proteoma/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Resultado do Tratamento , Células Tumorais Cultivadas , Proteínas ras
12.
Semin Oncol ; 29(1 Suppl 4): 3-14, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11894009

RESUMO

Lung cancer, like many other epithelial malignancies, is thought to be the outcome of genetic and epigenetic changes that result in a constellation of phenotypic abnormalities in bronchial epithelium. These include morphologic epithelial dysplasia, angiogenesis, increased proliferative rate, and changes in expression of cell surface proteins, particularly overexpression of epidermal growth factor receptor (EGFR) family proteins. The EFGR family is a group of four structurally similar tyrosine kinases (EGFR, HER2/neu, ErbB-3, and ErbB-4) that dimerize on binding with a number of ligands, including EGF and transforming growth factor alpha. Epidermal growth factor receptor overexpression is pronounced in virtually all squamous carcinomas and is also found in > or = 65% of large cell and adenocarcinomas. It is not expressed in situ by small cell lung carcinoma. Overexpression of EGFR is one of the earliest and most consistent abnormalities in bronchial epithelium of high-risk smokers. It is present at the stage of basal cell hyperplasia and persists through squamous metaplasia, dysplasia, and carcinoma in situ. Recent studies of the effect of inhibitors of receptor tyrosine kinases suggest that patterns of coexpression of multiple members of the EGFR family could be important in determining response. Intermediate endpoints of such trials could include monitoring of phosphorylation levels in signal transduction molecules downstream of the receptor dimers. These trials represent a new targeted approach to lung cancer treatment and chemoprevention that will require greater attention to molecular endpoints than required in past trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Transformação Celular Neoplásica , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/fisiopatologia , Lesões Pré-Cancerosas/fisiopatologia , Receptores Proteína Tirosina Quinases/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular , Ensaios Clínicos como Assunto , Receptores ErbB/fisiologia , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fosforilação , Transdução de Sinais , Fumar/efeitos adversos , Regulação para Cima
13.
Semin Oncol ; 29(1 Suppl 4): 37-46, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11894012

RESUMO

The epidermal growth factor receptor is overexpressed in a majority of non-small cell lung cancers and has been associated with a poor prognosis. Preclinical studies have shown that ZD1839, an oral anilinoquinazoline, targets the epidermal growth factor receptor-associated tyrosine kinase, reversibly inhibiting critical downstream signaling and resulting in cancer cell growth arrest. Potent antitumor effects have been observed in human lung tumor xenograft models. Preclinical studies have shown additive to synergistic effects when ZD1839 is combined with radiation or chemotherapy in colon, head and neck, and non-small cell lung cancers. Phase I clinical trials have shown modest dose-related toxicity, and antitumor activity has been reported in a variety of malignancies including lung cancer. Future studies will certainly combine ZD1839 with chemotherapy or radiation. ZD1839 also may be effective as a chemoprevention agent because premalignant lesions often overexpress epidermal growth factor receptor.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/biossíntese , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ciclo Celular/efeitos dos fármacos , Quimioprevenção , Ensaios Clínicos como Assunto , Terapia Combinada , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/efeitos dos fármacos , Gefitinibe , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Quinazolinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA