Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunol Rev ; 320(1): 29-57, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37283511

RESUMO

The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.


Assuntos
Interleucina-13 , Interleucina-4 , Humanos , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Citocinas/metabolismo , Células Th2 , Imunidade
2.
Nat Chem Biol ; 19(9): 1127-1137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37024727

RESUMO

The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.


Assuntos
Citocinas , Interleucina-4 , Animais , Transdução de Sinais
3.
Biol Sex Differ ; 14(1): 2, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609358

RESUMO

RATIONALE: Asthma is a chronic airway condition that occurs more often in women than men during reproductive years. Population studies have collectively shown that long-term use of oral contraceptives decreased the onset of asthma in women of reproductive age. In the current study, we hypothesized that steady-state levels of estrogen would reduce airway inflammation and airway hyperresponsiveness to methacholine challenge. METHODS: Ovariectomized BALB/c mice (Ovx) were implanted with subcutaneous hormone pellets (estrogen, OVX-E2) that deliver consistent levels of estrogen [68 ± 2 pg/mL], or placebo pellets (OVX-Placebo), followed by ovalbumin sensitization and challenge. In conjunction with methacholine challenge, immune phenotyping was performed to correlate inflammatory proteins and immune populations with better or worse pulmonary outcomes measured by invasive pulmonary mechanics techniques. RESULTS: Histologic analysis showed an increase in total cell infiltration and mucus staining around the airways leading to an increased inflammatory score in ovarectomized (OVX) animals with steady-state estrogen pellets (OVX-E2-OVA) as compared to other groups including female-sham operated (F-INTACT-OVA) and OVX implanted with a placebo pellet (OVX-Pl-OVA). Airway resistance (Rrs) and lung elastance (Ers) were increased in OVX-E2-OVA in comparison to F-INTACT-OVA following aerosolized intratracheal methacholine challenges. Immune phenotyping revealed that steady-state estrogen reduced CD3+ T cells, CD19+ B cells, ILC2 and eosinophils in the BAL across all experiments. While these commonly described allergic cells were reduced in the BAL, or airways, we found no changes in neutrophils, CD3+ T cells or CD19+ B cells in the remaining lung tissue. Similarly, inflammatory cytokines (IL-5 and IL-13) were also decreased in OVX-E2-OVA-treated animals in comparison to Female-INTACT-OVA mice in the BAL, but in the lung tissue IL-5, IL-13 and IL-33 were comparable in OVX-E2-OVA and F-INTACT OVA mice. ILC2 were sorted from the lungs and stimulated with exogenous IL-33. These ILC2 had reduced cytokine and chemokine expression when they were isolated from OVX-E2-OVA animals, indicating that steady-state estrogen suppresses IL-33-mediated activation of ILC2. CONCLUSIONS: Therapeutically targeting estrogen receptors may have a limiting effect on eosinophils, ILC2 and potentially other immune populations that may improve asthma symptoms in those females that experience perimenstrual worsening of asthma, with the caveat, that long-term use of estrogens or hormone receptor modulators may be detrimental to the lung microenvironment over time.


Assuntos
Asma , Interleucina-33 , Feminino , Animais , Camundongos , Interleucina-33/uso terapêutico , Estradiol/farmacologia , Estradiol/uso terapêutico , Imunidade Inata , Interleucina-13/uso terapêutico , Cloreto de Metacolina/farmacologia , Cloreto de Metacolina/uso terapêutico , Alérgenos/uso terapêutico , Resistência das Vias Respiratórias , Interleucina-5/uso terapêutico , Líquido da Lavagem Broncoalveolar , Linfócitos/metabolismo , Linfócitos/patologia , Pulmão/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas , Estrogênios/uso terapêutico
4.
Cell Immunol ; 360: 104252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450610

RESUMO

Allergic asthma affects more women than men. It is mediated partially by IL-4/IL-13-driven polarization of monocyte-derived macrophages in the lung. We tested whether sex differences in asthma are due to differential IL-4 responsiveness and/or chemokine receptor expression in monocytes and monocyte-derived macrophages from healthy and allergic asthmatic men and women. We found female cells expressed M2 genes more robustly following IL-4 stimulation than male cells, as did cells from asthmatics than those from healthy controls. This likely resulted from increased expression ofγC, part of the type I IL-4 receptor, and reduced IL-4-induced SOCS1, a negative regulator of IL-4 signaling, in asthmatic compared to healthy macrophages. Monocytes from asthmatic women expressed more CX3CR1, which enhances macrophage survival. Our findings highlight how sex differences in IL-4 responsiveness and chemokine receptor expression may affect monocyte recruitment and macrophage polarization in asthma, potentially leading to new sex-specific therapies to manage the disease.


Assuntos
Asma/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Adulto , Asma/metabolismo , Asma/fisiopatologia , Polaridade Celular/fisiologia , Quimiocinas/metabolismo , Feminino , Expressão Gênica/genética , Humanos , Interleucina-4/imunologia , Pulmão/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Fenótipo , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-4/imunologia , Receptores de Interleucina-4/metabolismo , Fatores Sexuais , Transdução de Sinais
5.
J Clin Invest ; 130(12): 6214-6217, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021506

RESUMO

COVID-19 spans a wide range of symptoms, sometimes with profound immune system involvement. How immune cell subsets change during the disease course and with disease severity needs further study. While myeloid cells have been shown to initiate and maintain responses to pneumonia and lung inflammation, often playing a role in resolution, their involvement with COVID-19 remains unknown. In this issue of the JCI, Sánchez-Cerrillo and Landete et al. investigated DCs and monocytes from blood and bronchial secretions of patients with varying COVID-19 severity and with healthy controls. The authors conclude that circulating monocytes and DCs migrate from the blood into the inflamed lungs. While sampling differences in sex, collection timing, bacteria/fungal infection, and corticosteroid treatment limit interpretation, we believe that reprogramming monocyte or macrophages by targeting immunometabolism, epigenetics, or the cytokine milieu holds promise in resolving lung inflammation associated with COVID-19.


Assuntos
COVID-19 , Humanos , Pulmão , Monócitos , Pandemias , SARS-CoV-2
6.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L833-L842, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902333

RESUMO

Airway smooth muscle hyperresponsiveness associated with chronic airway inflammation leads to the typical symptoms of asthma including bronchoconstriction and wheezing. Asthma severity is associated with airway inflammation; therefore, reducing airway inflammation is an important therapeutic target. Gelsolin is an actin capping and severing protein that has been reported to be involved in modulation of the inflammatory response. Using mice genetically lacking gelsolin, we evaluated the role of gelsolin in the establishment of house dust mite (HDM) antigen-induced allergic lung inflammation. The genetic absence of gelsolin was found to be protective against HDM sensitization, resulting in reduced lung inflammation, inflammatory cytokines, and Muc5AC protein in bronchoalveolar lavage (BAL) fluid. The number of eosinophils, lymphocytes, and interstitial macrophages in the BAL were increased after HDM sensitization in wild-type mice but were attenuated in gelsolin-null mice. The observed attenuation of inflammation may be partly due to delayed migration of immune cells, because the reduced eosinophils in the BALs from gelsolin-null mice compared with controls occurred despite similar amounts of the chemoattractant eotaxin. Splenic T cells demonstrated similar proliferation rates, but ex vivo alveolar macrophage migration was delayed in gelsolin-null mice. In vivo, the reduced lung inflammation after HDM sensitization in gelsolin-null mice was associated with significantly diminished airway resistance to inhaled methacholine compared with HDM-treated wild-type mice. Our results suggest that modulation of gelsolin expression or function in selective inflammatory cell types that modulate allergic lung inflammation could be a therapeutic approach for asthma.

7.
Brain Behav Immun ; 83: 298-302, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626971

RESUMO

BACKGROUND: Opioids are commonly used to provide analgesia for cancer pain, and functional opioid receptors have been identified on natural killer (NK) cells, the lymphocytes responsible for surveillance and elimination of cancer cells. Opioids also bind to other lymphocyte receptors, such as Toll-like receptor (TLR)-4. Here, we characterized the effects of morphine on primary human NK cell cytotoxicity and mediator release, which occur through classical opioid receptor or TLR4 signaling. METHODS: Purified primary human NK cells were pretreated with inhibitors of opioid receptors or TLR4 before being cultured with target tumor cell line K562 in the presence or absence of morphine. Apoptosis of K562 cells in each treatment condition was measured with an Annexin V flow cytometry-based assay and compared to that of K562 cells cultured with NK cells alone. Supernatant concentrations of 13 cytokines and cytotoxic mediators were measured with a multiplex bead-based flow cytometry assay. RESULTS: Exposure of NK cells to morphine decreased their ability to induce apoptosis in K562 cells. Pretreating the NK cells with either naloxone, a mu- and kappa-opioid receptor antagonist, or TAK-242, a selective inhibitor of TLR4 signaling, prevented this effect. Paradoxically, morphine increased the concentration of interleukin-6, granzyme A, and granzyme B in cell supernatants. Pretreatment of NK cells with TAK-242 prevented the morphine-induced increase in interleukin-6, whereas pretreatment with naloxone inhibited the morphine-induced increase in granzymes A and B. CONCLUSIONS: Both classical opioid receptors and TLR4 participate in morphine-induced suppression of NK cell cytotoxic activity. These studies have important implications for maintenance of immune function during management of cancer pain.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Morfina/farmacologia , Receptores Opioides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Analgésicos Opioides/farmacologia , Humanos , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores
8.
Anesth Analg ; 128(5): 1013-1021, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801358

RESUMO

BACKGROUND: The use of regional and other opioid-sparing forms of anesthesia has been associated with a decrease in the recurrence of certain malignancies. Direct suppression of human natural killer cells by opioids has been postulated to explain this observation. However, the effect of different classes of opioids on suppression of natural killer cell cytotoxicity has not been systematically characterized. METHODS: After confirming that freshly isolated natural killer cells from peripheral human blood express opioid receptors, cells were incubated with increasing concentrations of clinically used or receptor-specific opioid agonists. We also evaluated the effect of pretreatment with receptor-specific antagonists or naloxone. Treated natural killer cells were then coincubated with a carboxyfluorescein succinimidyl ester-labeled target tumor cell line, K562. Annexin V staining was used to compare the percent of tumor cell apoptosis in the presence of opioid-pretreated and untreated natural killer cells. Treated samples were compared to untreated samples using Kruskal-Wallis tests with a post hoc Dunn correction. RESULTS: Morphine, methadone, buprenorphine, loperamide, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin, and U-50488 significantly decreased natural killer cell cytotoxicity. When natural killer cells were pretreated with naloxone, cyprodime, and nor-binaltorphimine before exposure to morphine, there was no difference in natural killer cytotoxicity, compared to the amount observed by untreated natural killer cells. Fentanyl, O-desmethyltramadol, and [D-Pen2,D-Pen5] enkephalin did not change natural killer cell cytotoxicity compare to untreated natural killer cells. CONCLUSIONS: Incubation of isolated natural killer cells with certain opioids causes a decrease in activity that is not observed after naloxone pretreatment. Suppression of natural killer cell cytotoxicity was observed with µ- and κ-receptor agonists but not δ-receptor agonists. These data suggest that the effect is mediated by µ- and κ-receptor agonism and that suppression is similar with many clinically used opioids.


Assuntos
Analgésicos Opioides/administração & dosagem , Células Matadoras Naturais/efeitos dos fármacos , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/administração & dosagem , Anestesia , Buprenorfina/administração & dosagem , D-Penicilina (2,5)-Encefalina/administração & dosagem , Fentanila/administração & dosagem , Fluoresceínas/administração & dosagem , Humanos , Terapia de Imunossupressão , Células K562 , Loperamida/administração & dosagem , Metadona/administração & dosagem , Morfinanos/administração & dosagem , Morfina/administração & dosagem , Naloxona/administração & dosagem , Naltrexona/administração & dosagem , Naltrexona/análogos & derivados , Succinimidas/administração & dosagem , Receptor 4 Toll-Like/metabolismo , Tramadol/administração & dosagem , Tramadol/análogos & derivados
9.
J Immunol ; 201(10): 2923-2933, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30305328

RESUMO

Allergic asthma is a disease initiated by a breach of the lung mucosal barrier and an inappropriate Th2 inflammatory immune response that results in M2 polarization of alveolar macrophages (AM). The number of M2 macrophages in the airway correlates with asthma severity in humans. Sex differences in asthma suggest that sex hormones modify lung inflammation and macrophage polarization. Asthmatic women have more M2 macrophages than asthmatic men and androgens have been used as an experimental asthma treatment. In this study, we demonstrate that although androgen (dihydrotestosterone) reconstitution of castrated mice reduced lung inflammation in a mouse model of allergic lung inflammation, it enhanced M2 polarization of AM. This indicates a cell-specific role for androgens. Dihydrotestosterone also enhanced IL-4-stimulated M2 macrophage polarization in vitro. Using mice lacking androgen receptor (AR) in monocytes/macrophages (ARfloxLysMCre), we found that male but not female mice exhibited less eosinophil recruitment and lung inflammation due to impaired M2 polarization. There was a reduction in eosinophil-recruiting chemokines and IL-5 in AR-deficient AM. These data reveal an unexpected and novel role for androgen/AR in promoting M2 macrophage polarization. Our findings are also important for understanding pathology in diseases promoted by M2 macrophages and androgens, such as asthma, eosinophilic esophagitis, and prostate cancer, and for designing new approaches to treatment.


Assuntos
Androgênios/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Eosinofilia Pulmonar/imunologia , Receptores Androgênicos/imunologia , Androgênios/farmacologia , Animais , Asma/imunologia , Castração , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Di-Hidrotestosterona/imunologia , Di-Hidrotestosterona/farmacologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Feminino , Hipersensibilidade/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Eosinofilia Pulmonar/metabolismo
10.
Front Immunol ; 9: 1037, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868002

RESUMO

In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.


Assuntos
Receptor de Insulina/imunologia , Receptores de Interleucina-13/metabolismo , Receptores de Interleucina-4/metabolismo , Animais , Divisão Celular , História do Século XX , História do Século XXI , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Receptor de Insulina/história , Receptores de Interleucina-13/imunologia , Receptores de Interleucina-4/imunologia , Transdução de Sinais , Tirosina/metabolismo , Células U937
11.
Am J Respir Crit Care Med ; 198(7): 850-858, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746147

RESUMO

Female sex/gender is an undercharacterized variable in studies related to lung development and disease. Notwithstanding, many aspects of lung and sleep biology and pathobiology are impacted by female sex and female reproductive transitions. These may manifest as differential gene expression or peculiar organ development. Some conditions are more prevalent in women, such as asthma and insomnia, or, in the case of lymphangioleiomyomatosis, are seen almost exclusively in women. In other diseases, presentation differs, such as the higher frequency of exacerbations experienced by women with chronic obstructive pulmonary disease or greater cardiac morbidity among women with sleep-disordered breathing. Recent advances in -omics and behavioral science provide an opportunity to specifically address sex-based differences and explore research needs and opportunities that will elucidate biochemical pathways, thus enabling more targeted/personalized therapies. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the NIH Office of Research on Women's Health and the Office of Rare Diseases Research, convened a workshop of investigators in Bethesda, Maryland on September 18 and 19, 2017. At the workshop, the participants reviewed the current understanding of the biological, behavioral, and clinical implications of female sex and gender on lung and sleep health and disease, and formulated recommendations that address research gaps, with a view to achieving better health outcomes through more precise management of female patients with nonneoplastic lung disease. This report summarizes those discussions.


Assuntos
Pneumopatias/epidemiologia , Pneumopatias/fisiopatologia , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/fisiopatologia , Saúde da Mulher , Adulto , Idoso , Asma/epidemiologia , Asma/fisiopatologia , Comportamento , Compreensão , Gerenciamento Clínico , Educação , Feminino , Humanos , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Medição de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Síndromes da Apneia do Sono/epidemiologia , Síndromes da Apneia do Sono/fisiopatologia , Estados Unidos
12.
J Immunol ; 199(5): 1573-1583, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760880

RESUMO

Allergic asthma is a chronic Th2 inflammation in the lungs that constricts the airways and presents as coughing and wheezing. Asthma mostly affects boys in childhood and women in adulthood, suggesting that shifts in sex hormones alter the course of the disease. Alveolar macrophages have emerged as major mediators of allergic lung inflammation in animal models as well as humans. Whether sex differences exist in macrophage polarization and the molecular mechanism(s) that drive differential responses are not well understood. We found that IL-4-stimulated bone marrow-derived and alveolar macrophages from female mice exhibited greater expression of M2 genes in vitro and after allergen challenge in vivo. Alveolar macrophages from female mice exhibited greater expression of the IL-4Rα and estrogen receptor (ER) α compared with macrophages from male mice following allergen challenge. An ERα-specific agonist enhanced IL-4-induced M2 gene expression in macrophages from both sexes, but more so in macrophages from female mice. Furthermore, IL-4-stimulated macrophages from female mice exhibited more transcriptionally active histone modifications at M2 gene promoters than did macrophages from male mice. We found that supplementation of estrogen into ovariectomized female mice enhanced M2 polarization in vivo upon challenge with allergen and that macrophage-specific deletion of ERα impaired this M2 polarization. The effects of estrogen are long-lasting; bone marrow-derived macrophages from ovariectomized mice implanted with estrogen exhibited enhanced IL-4-induced M2 gene expression compared with macrophages from placebo-implanted littermates. Taken together, our findings suggest that estrogen enhances IL-4-induced M2 gene expression and thereby contributes to sex differences observed in asthma.


Assuntos
Asma/imunologia , Estrogênios/metabolismo , Macrófagos Alveolares/fisiologia , Pneumonia/imunologia , Sexo , Células Th2/imunologia , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Interleucina-4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
F1000Res ; 6: 1014, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28721208

RESUMO

Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. ß-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .

14.
Neurobiol Dis ; 103: 54-69, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28365213

RESUMO

Microglia/macrophages (MMΦ) are highly plastic phagocytes that can promote both injury and repair in diseased brain through the distinct function of classically activated and alternatively activated subsets. The role of MMΦ polarization in intracerebral hemorrhage (ICH) is unknown. Herein, we comprehensively characterized MMΦ dynamics after ICH in mice and evaluated the relevance of MMΦ polarity to hematoma resolution. MMΦ accumulated within the hematoma territory until at least 14days after ICH induction. Microglia rapidly reacted to the hemorrhagic insult as early as 1-1.5h after ICH and specifically presented a "protective" alternatively activated phenotype. Substantial numbers of activated microglia and newly recruited monocytes also assumed an early alternatively activated phenotype, but the phenotype gradually shifted to a mixed spectrum over time. Ultimately, markers of MMΦ classic activation dominated at the chronic stage of ICH. We enhanced MMΦ alternative activation by administering intraperitoneal injections of rosiglitazone, and subsequently observed elevations in CD206 expression on brain-isolated CD11b+ cells and increases in IL-10 levels in serum and perihematomal tissue. Enhancement of MMΦ alternative activation correlated with hematoma volume reduction and improvement in neurologic deficits. Intraventricular injection of alternative activation signature cytokine IL-10 accelerated hematoma resolution, whereas microglial phagocytic ability was abolished by IL-10 receptor neutralization. Our results suggest that MMΦ respond dynamically to brain hemorrhage by exhibiting diverse phenotypic changes at different stages of ICH. Alternative activation-skewed MMΦ aid in hematoma resolution, and IL-10 signaling might contribute to regulation of MMΦ phagocytosis and hematoma clearance in ICH.


Assuntos
Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Animais , Hemorragia Cerebral/patologia , Hematoma/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Técnicas de Cultura de Órgãos , Distribuição Aleatória
15.
J Biol Chem ; 291(48): 24922-24930, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27742835

RESUMO

Lung M2 macrophages are regulators of airway inflammation, associated with poor lung function in allergic asthma. Previously, we demonstrated that IL-4-induced M2 gene expression correlated with tyrosine phosphorylation of the insulin receptor substrate-2 (IRS-2) in macrophages. We hypothesized that negative regulation of IRS-2 activity after IL-4 stimulation is dependent upon serine phosphorylation of IRS-2. Herein, we describe an inverse relationship between tyrosine phosphorylation (Tyr(P)) and serine phosphorylation (Ser(P)) of IRS-2 after IL-4 stimulation. Inhibiting serine phosphatase activity increased Ser(P)-IRS-2 and decreased Tyr(P)-IRS-2 leading to reduced M2 gene expression (CD200R, CCL22, MMP12, and TGM2). We found that inhibition of p70S6K, downstream of TORC1, resulted in diminished Ser(P)-IRS-2 and prolonged Tyr(P)-IRS-2 as well. Inhibition of p70S6K increased expression of CD200R and CCL22 indicating that p70S6K negatively regulates some, but not all, human M2 genes. Knocking down GRB10, another negative regulatory protein downstream of TORC1, enhanced both Tyr(P)-IRS-2 and increased expression of all four M2 genes. Furthermore, GRB10 associated with IRS-2, NEDD4.2 (an E3-ubiquitin ligase), IL-4Rα, and γC after IL-4 stimulation. Both IL-4Rα and γC were ubiquitinated after 30 min of IL-4 treatment, suggesting that GRB10 may regulate degradation of the IL-4 receptor-signaling complex through interactions with NEDD4.2. Taken together, these data highlight two novel regulatory proteins that could be therapeutically manipulated to limit IL-4-induced IRS-2 signaling and polarization of M2 macrophages in allergic inflammation.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína Adaptadora GRB10/genética , Regulação da Expressão Gênica/genética , Humanos , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Interleucina-4/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Ubiquitina-Proteína Ligases Nedd4 , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/genética , Células U937 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
J Biol Chem ; 291(39): 20574-87, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27507812

RESUMO

Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.


Assuntos
Hipersensibilidade/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/biossíntese , Animais , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipersensibilidade/genética , Hipersensibilidade/patologia , Proteínas Substratos do Receptor de Insulina/genética , Interleucina-4/genética , Macrófagos/patologia , Masculino , Camundongos , Monócitos/patologia , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Transdução de Sinais/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Tirosina/genética , Tirosina/metabolismo , Células U937 , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação/genética
17.
Arterioscler Thromb Vasc Biol ; 36(1): 134-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586659

RESUMO

OBJECTIVE: Pulmonary hypertension (PH) is characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown that in rodents, hypoxia-induced mitogenic factor (HIMF; also known as FIZZ1 or resistin-like molecule-ß) causes PH by initiating lung vascular inflammation. We hypothesized that hypoxia-inducible factor-1 (HIF-1) is a critical downstream signal mediator of HIMF during PH development. APPROACH AND RESULTS: In this study, we compared the degree of HIMF-induced pulmonary vascular remodeling and PH development in wild-type (HIF-1α(+/+)) and HIF-1α heterozygous null (HIF-1α(+/-)) mice. HIMF-induced PH was significantly diminished in HIF-1α(+/-) mice and was accompanied by a dysregulated vascular endothelial growth factor-A-vascular endothelial growth factor receptor 2 pathway. HIF-1α was critical for bone marrow-derived cell migration and vascular tube formation in response to HIMF. Furthermore, HIMF and its human homolog, resistin-like molecule-ß, significantly increased interleukin (IL)-6 in macrophages and lung resident cells through a mechanism dependent on HIF-1α and, at least to some extent, on nuclear factor κB. CONCLUSIONS: Our results suggest that HIF-1α is a critical downstream transcription factor for HIMF-induced pulmonary vascular remodeling and PH development. Importantly, both HIMF and human resistin-like molecule-ß significantly increased IL-6 in lung resident cells and increased perivascular accumulation of IL-6-expressing macrophages in the lungs of mice. These data suggest that HIMF can induce HIF-1, vascular endothelial growth factor-A, and interleukin-6, which are critical mediators of both hypoxic inflammation and PH pathophysiology.


Assuntos
Hipertensão Pulmonar/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular , Animais , Apoptose , Transplante de Medula Óssea , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Genótipo , Hemodinâmica , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-6/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fenótipo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Front Immunol ; 6: 549, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579124

RESUMO

Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.

19.
BMC Immunol ; 16: 62, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26482437

RESUMO

BACKGROUND: Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cell effector subsets in the thymus during development is also unclear. In this report we show that ß-catenin dependent mechanisms direct differentiation of iNKT2 and iNKT17 subsets but not iNKT1 cells. METHODS: To study the role for ß-catenin in lung inflammation we utilize mice with conditional deletion and enforced expression of ß-catenin in a well-established mouse model for IL-25-dependen lung inflammation. RESULTS: Specifically, we demonstrate that conditional deletion of ß-catenin permitted development of mature iNKT1 cells while impeding maturation of iNKT2 and 17 cells. A role for ß-catenin expression in promoting iNKT2 and iNKT17 subsets was confirmed when we noted that enforced transgenic expression of ß-catenin in iNKT cell precursors enhanced the frequency and number of iNKT2 and iNKT17 cells at the cost of iNKT1 cells. This effect of expression of ß-catenin in iNKT cell precursors was cell autonomous. Furthermore, iNKT2 cells acquired greater capability to produce type-2 cytokines when ß-catenin expression was enhanced. DISCUSSION: This report shows that ß-catenin deficiency resulted in a profound decrease in iNKT2 and iNKT17 subsets of iNKT cells whereas iNKT1 cells developed normally. By contrast, enforced expression of ß-catenin promoted the development of iNKT2 and iNKT17 cells. It was important to note that the majority of iNKT cells in the thymus of C57BL/6 mice were iNKT1 cells and enforced expression of ß-catenin altered the pattern to iNKT2 and iNKT17 cells suggesting that ß-catenin may be a major factor in the distinct pathways that critically direct differentiation of iNKT effector subsets. CONCLUSIONS: Thus, we demonstrate that ß-catenin expression in iNKT cell precursors promotes differentiation toward iNKT2 and iNKT17 effector subsets and supports enhanced capacity to produce type 2 and 17 cytokines which in turn augment lung inflammation in mice.


Assuntos
Diferenciação Celular , Interleucina-17/metabolismo , Células T Matadoras Naturais/imunologia , Pneumonia/imunologia , Pneumonia/patologia , beta Catenina/metabolismo , Animais , Hiper-Reatividade Brônquica/complicações , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia/complicações
20.
Cytokine ; 75(1): 38-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26187331

RESUMO

Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Receptores de Interleucina-13/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-13/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13 , Interleucina-4/metabolismo , Subunidade alfa de Receptor de Interleucina-4/genética , Camundongos , Fenótipo , Polimorfismo Genético , Receptores de Interleucina-13/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA