Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Hear Res ; 447: 109021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703432

RESUMO

Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.


Assuntos
Cóclea , Modelos Animais de Doenças , Células Ciliadas Auditivas , Regeneração , Animais , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/metabolismo , Camundongos , Cóclea/patologia , Cóclea/fisiopatologia , Humanos , Audição , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Estimulação Acústica
2.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645253

RESUMO

Hearing impairment arises from the loss of either type of cochlear sensory hair cells. Inner hair cells act as primary sound transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 hours, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained intact until three days post-treatment, after which deterioration in structure and number was observed, culminating in cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.

3.
Cell Rep ; 43(3): 113822, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393948

RESUMO

Hearing starts, at the cellular level, with mechanoelectrical transduction by sensory hair cells. Sound information is then transmitted via afferent synaptic connections with auditory neurons. Frequency information is encoded by the location of hair cells along the cochlear duct. Loss of hair cells, synapses, or auditory neurons leads to permanent hearing loss in mammals. Birds, in contrast, regenerate auditory hair cells and functionally recover from hearing loss. Here, we characterized regeneration and reinnervation in sisomicin-deafened chickens and found that afferent neurons contact regenerated hair cells at the tips of basal projections. In contrast to development, synaptic specializations are established at these locations distant from the hair cells' bodies. The protrusions then contracted as regenerated hair cells matured and became functional 2 weeks post-deafening. We found that auditory thresholds recovered after 4-5 weeks. We interpret the regeneration-specific synaptic reestablishment as a location-preserving process that might be needed to maintain tonotopic fidelity.


Assuntos
Galinhas , Perda Auditiva , Animais , Células Ciliadas Auditivas/fisiologia , Audição , Som , Mamíferos
4.
Dev Cell ; 59(2): 280-291.e5, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38128539

RESUMO

Hearing loss is a chronic disease affecting millions of people worldwide, yet no restorative treatment options are available. Although non-mammalian species can regenerate their auditory sensory hair cells, mammals cannot. Birds retain facultative stem cells known as supporting cells that engage in proliferative regeneration when surrounding hair cells die. Here, we investigated gene expression changes in chicken supporting cells during auditory hair cell death. This identified a pathway involving the receptor F2RL1, HBEGF, EGFR, and ERK signaling. We propose a cascade starting with the proteolytic activation of F2RL1, followed by matrix-metalloprotease-mediated HBEGF shedding, and culminating in EGFR-mediated ERK signaling. Each component of this cascade is essential for supporting cell S-phase entry in vivo and is integral for hair cell regeneration. Furthermore, STAT3-phosphorylation converges with this signaling toward upregulation of transcription factors ATF3, FOSL2, and CREM. Our findings could provide a basis for designing treatments for hearing and balance disorders.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Transdução de Sinais/fisiologia , Galinhas/metabolismo , Perda Auditiva/metabolismo , Receptores ErbB/metabolismo , Mamíferos/metabolismo
5.
Cell Rep ; 42(6): 112545, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37227818

RESUMO

An abundance of research has recently highlighted the susceptibility of cochleovestibular ganglion (CVG) neurons to noise damage and aging in the adult cochlea, resulting in hearing deficits. Furthering our understanding of the transcriptional cascades that contribute to CVG development may provide insight into how these cells can be regenerated to treat inner ear dysfunction. Here we perform a high-depth single-cell RNA sequencing analysis of the E10.5 otic vesicle and its surrounding tissues, including CVG precursor neuroblasts and emerging CVG neurons. Clustering and trajectory analysis of otic-lineage cells reveals otic markers and the changes in gene expression that occur from neuroblast delamination toward the development of the CVG. This dataset provides a valuable resource for further identifying the mechanisms associated with CVG development from neurosensory competent cells within the otic vesicle.


Assuntos
Cóclea , Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , Neurônios , Regulação da Expressão Gênica no Desenvolvimento
6.
Hear Res ; 428: 108686, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587458

RESUMO

The mammalian inner ear contains six sensory patches that allow detection of auditory stimuli as well as movement and balance. Much research has focused on the organ of Corti, the sensory organ of the cochlea that detects sound. Unfortunately, these cells are difficult to access in vivo, especially in the mature animal, but the development of genetically modified mouse models, including Cre/Lox mice, has improved the ability to label, purify or manipulate these cells. Here, we describe a new tamoxifen-inducible CreER mouse line, the Fbxo2CreERT2 mouse, that can be used to specifically manipulate cells throughout the cochlear duct of the neonatal and mature cochlear epithelium. In vestibular sensory epithelia, Fbxo2CreERT2-mediated recombination occurs in many hair cells and more rarely in supporting cells of neonatal and adult mice, with a higher rate of Fbxo2CreERT2 induction in type 1 versus type 2 hair cells in adults. Fbxo2CreERT2 mice, therefore, are a new tool for the specific manipulation of epithelial cells of the inner ear and targeted manipulation of vestibular type 1 hair cells.


Assuntos
Cóclea , Células Ciliadas Vestibulares , Camundongos , Animais , Células Ciliadas Auditivas , Epitélio , Células Ciliadas Auditivas Internas , Mamíferos
8.
Cell Rep ; 40(13): 111432, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170825

RESUMO

The avian utricle, a vestibular organ of the inner ear, displays turnover of sensory hair cells throughout life. This is in sharp contrast to the mammalian utricle, which shows limited regenerative capacity. Here, we use single-cell RNA sequencing to identify distinct marker genes for the different sensory hair cell subtypes of the chicken utricle, which we validated in situ. We provide markers for spatially distinct supporting cell populations and identify two transitional cell populations of dedifferentiating supporting cells and developing hair cells. Trajectory reconstruction resulted in an inventory of gene expression dynamics of natural hair cell generation in the avian utricle.


Assuntos
Células Ciliadas Auditivas , Sáculo e Utrículo , Animais , Galinhas , Células Epiteliais , Mamíferos
9.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420675

RESUMO

The avian hearing organ is the basilar papilla that, in sharp contrast to the mammalian cochlea, can regenerate sensory hair cells and thereby recover from deafness within weeks. The mechanisms that trigger, sustain and terminate the regenerative response in vivo are largely unknown. Here, we profile the changes in gene expression in the chicken basilar papilla after aminoglycoside antibiotic-induced hair cell loss using RNA-sequencing. We identified changes in gene expression of a group of immune-related genes and confirmed with single-cell RNA-sequencing that these changes occur in supporting cells. In situ hybridization was used to further validate these findings. We determined that the JAK/STAT signaling pathway is essential for upregulation of the damage-response genes in supporting cells during the second day after induction of hair cell loss. Four days after ototoxic damage, we identified newly regenerated, nascent auditory hair cells that express genes linked to termination of the JAK/STAT signaling response. The robust, transient expression of immune-related genes in supporting cells suggests a potential functional involvement of JAK/STAT signaling in sensory hair cell regeneration.


Assuntos
Galinhas , Células Ciliadas Auditivas , Animais , Antibacterianos , Cóclea , Células Ciliadas Auditivas/metabolismo , Mamíferos , RNA/metabolismo
10.
Otol Neurotol ; 43(4): e519-e525, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35239617

RESUMO

OBJECTIVE: To develop a surgical approach for rapid and minimally traumatic recovery of inner ear tissue from human organ and tissue donors to provide fresh tissue for use in inner ear research. STUDY DESIGN: Exploration of novel surgical methodology and evaluation of the steps necessary for obtaining specimens from donors during the procurement of organs for transplantation. SETTING: Donor procurement locations across multiple local hospitals and tissue processing at the microsurgical temporal bone laboratory. PATIENTS TISSUE SOURCE: Human organ and tissue donors. INTERVENTIONS: Dissection and procurement of the inner ear tissue. MAIN OUTCOME MEASURES: Development of rapid and minimally traumatic inner ear tissue recovery. Primarily, establishing an efficient process which includes collaboration with transplant network, implementing a consent protocol, developing and training an on-call recovery team, and designing a portable surgical kit suitable for use in a variety of settings. RESULTS: The extraction procedure is described in three consecutive steps: the trans-canal exposure, the approach to the vestibule with extraction of the vestibular organs; and the approach to extract inner ear tissues from the cochlear duct. CONCLUSIONS: Organ and tissue donors are a promising and underutilized resource of inner ear organs for purposes of research and future translational studies. Using our modified technique through the trans-canal/trans-otic approach, we were able to extract tissues of the vestibular and auditory end organs in a timely manner.


Assuntos
Doadores de Tecidos , Vestíbulo do Labirinto , Humanos , Osso Temporal/cirurgia
11.
Otol Neurotol ; 43(4): e507-e514, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120078

RESUMO

OBJECTIVE: To identify optimal conditions for recovering viable inner ear tissues from deceased organ donors. SETTING: Tertiary recovery hospitals and Donor Network West Organ Recovery Center. INTERVENTIONS: Recovering bilateral inner ear tissues and immunohistological analysis. MAIN OUTCOME MEASURES: Immunohistochemical analysis of utricles from human organ donors after brain death (DBD) or donors after cardiac death (DCD). RESULTS: Vestibular tissues from 21 organ donors (39 ears) were recovered. Of these, 18 donors (33 utricles) were examined by immunofluorescence. The sensory epithelium was present in seven utricles (two from DBD and five from DCD). Relative to DBD utricles, DCD organs more commonly displayed dense populations of hair cells and supporting cells. Relative to DBD, DCD had significantly shorter postmortem interval time to tissue recovery (<48 h). Compared to donors with no sensory epithelium, donors with intact and viable sensory epithelium (both DCD and DBD) had significantly shorter lag time to resuscitation prior to hospital admission (6.4 ±â€Š9.2 vs 35.6 ±â€Š23.7 min, respectively) as well as a shorter time between pronouncements of death to organ recovery (22.6 ±â€Š30.4 vs 64.8 ±â€Š22.8 h, respectively). CONCLUSIONS: Organ donors are a novel resource for bilateral inner ear organs. Selecting tissue donors within defined parameters can optimize the quality of recovered inner ear tissues, thereby facilitating future research investigating sensory and nonsensory cells.


Assuntos
Orelha Interna , Obtenção de Tecidos e Órgãos , Morte Encefálica , Humanos , Seleção de Pacientes , Estudos Retrospectivos , Doadores de Tecidos
12.
Insects ; 12(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940205

RESUMO

(1) The project "Tatort Streetlight" implements an insect-friendly road light design in a four year before-after, control-impact (BACI) approach involving citizen scientists. It will broaden the stakeholder interests from solely anthropogenic perspectives to include the welfare of insects and ecosystems. Motivated by the detrimental impacts of road lighting systems on insects, the project aims to find solutions to reduce the insect attraction and habitat fragmentation resulting from roadway illumination. (2) The citizen science approach invites stakeholders to take part and join forces for the development of a sustainable and environmentally friendly road lighting solution. Here, we describe the project strategy, stakeholder participation and motivation, and how the effects of the alternative road luminaire and lighting design can be evaluated. (3) The study compares the changes in (a) insect behavior, (b) night sky brightness, and (c) stakeholder participation and awareness. For this purpose, different experimental areas and stakeholders in four communities in Germany are identified. (4) The project transfers knowledge of adverse effects of improperly managed road illumination and interacts with various stakeholders to develop a new road lighting system that will consider the well-being of street users, local residents, and insects.

13.
STAR Protoc ; 2(3): 100711, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34401777

RESUMO

Ossification and the delicateness of the cochlear duct make histologic assessments of the mature cochlea a challenging endeavor. Treatments to soften the bone facilitate sectioning and dissection of the cochlear duct but limit in situ mRNA detection in such specimens. Here, we provide a protocol for in situ mRNA detection using hybridization chain reaction in whole-mount preparations of the adult mouse cochlea. We show examples for multi-probe detection of different mRNAs and describe combination of this method with conventional immunohistochemistry.


Assuntos
Cóclea/diagnóstico por imagem , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Animais , Cóclea/metabolismo , Hibridização In Situ/métodos , Camundongos , RNA Mensageiro/análise , RNA Mensageiro/genética
14.
STAR Protoc ; 2(3): 100645, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34278332

RESUMO

Neonatal mouse cochlear duct cells can proliferate and grow in vitro into inner ear organoids. Distinctive cochlear duct cell types have different organoid formation capacities. Here, we provide a flow cytometric cell-sorting method that allows the subsequent culture of individual cochlear cell populations. For the efficient culture of the sorted cells, we provide protocols for growing free-floating inner ear organoids, the adherence of organoids to a substrate, and the expansion of organoid-derived inner ear colonies. For complete details on the use and execution of this protocol, please refer to Kubota et al. (2021).


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Cóclea/citologia , Organoides/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Adesão Celular , Células Cultivadas , Feminino , Masculino , Camundongos
15.
Cell Rep ; 36(2): 109358, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260939

RESUMO

The utricle is a vestibular sensory organ that requires mechanosensitive hair cells to detect linear acceleration. In neonatal mice, new hair cells are derived from non-sensory supporting cells, yet cell type diversity and mechanisms of cell addition remain poorly characterized. Here, we perform computational analyses on single-cell transcriptomes to categorize cell types and resolve 14 individual sensory and non-sensory subtypes. Along the periphery of the sensory epithelium, we uncover distinct groups of transitional epithelial cells, marked by Islr, Cnmd, and Enpep expression. By reconstructing de novo trajectories and gene dynamics, we show that as the utricle expands, Islr+ transitional epithelial cells exhibit a dynamic and proliferative phase to generate new supporting cells, followed by coordinated differentiation into hair cells. Taken together, our study reveals a sequential and coordinated process by which non-sensory epithelial cells contribute to growth of the postnatal mouse sensory epithelium.


Assuntos
Orelha Interna/citologia , Sensação/genética , Análise de Célula Única , Transcriptoma/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem da Célula , Células Epiteliais/citologia , Células Ciliadas Auditivas/citologia , Camundongos , Reprodutibilidade dos Testes , Sáculo e Utrículo/citologia , Transcrição Gênica
16.
Cell Rep ; 34(12): 108900, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761346

RESUMO

In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells. We identify markers for the supporting cells associated with tall hair cells, which represent the facultative stem cells of the avian inner ear. Likewise, we present markers for supporting cells that are located below the short cochlear hair cells. We further infer spatial expression gradients of hair cell genes along the tonotopic axis of the cochlea. This resource advances neurobiology, comparative biology, and regenerative medicine by providing a basis for comparative studies with non-regenerating mammalian cochleae and for longitudinal studies of the regenerating avian cochlea.


Assuntos
Galinhas/anatomia & histologia , Cóclea/citologia , Animais , Biomarcadores/metabolismo , Epitélio/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Ciliadas Auditivas Internas/citologia , Células Labirínticas de Suporte/citologia , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única
17.
Cell Rep ; 34(12): 108902, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761357

RESUMO

Sensory hair cells are prone to apoptosis caused by various drugs including aminoglycoside antibiotics. In mammals, this vulnerability results in permanent hearing loss because lost hair cells are not regenerated. Conversely, hair cells regenerate in birds, making the avian inner ear an exquisite model for studying ototoxicity and regeneration. Here, we use single-cell RNA sequencing and trajectory analysis on control and dying hair cells after aminoglycoside treatment. Interestingly, the two major subtypes of avian cochlear hair cells, tall and short hair cells, respond differently. Dying short hair cells show a noticeable transient upregulation of many more genes than tall hair cells. The most prominent gene group identified is associated with potassium ion conductances, suggesting distinct physiological differences. Moreover, the dynamic characterization of >15,000 genes expressed in tall and short avian hair cells during their apoptotic demise comprises a resource for further investigations toward mammalian hair cell protection and hair cell regeneration.


Assuntos
Galinhas/genética , Células Ciliadas Auditivas/patologia , Transcriptoma/genética , Aminoglicosídeos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Canais Semicirculares/efeitos dos fármacos , Canais Semicirculares/metabolismo , Sisomicina/administração & dosagem , Sisomicina/farmacologia , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
18.
Cell Rep ; 34(3): 108646, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472062

RESUMO

In mammals, hearing loss is irreversible due to the lack of regenerative potential of non-sensory cochlear cells. Neonatal cochlear cells, however, can grow into organoids that harbor sensory epithelial cells, including hair cells and supporting cells. Here, we purify different cochlear cell types from neonatal mice, validate the composition of the different groups with single-cell RNA sequencing (RNA-seq), and assess the various groups' potential to grow into inner ear organoids. We find that the greater epithelial ridge (GER), a transient cell population that disappears during post-natal cochlear maturation, harbors the most potent organoid-forming cells. We identified three distinct GER cell groups that correlate with a specific spatial distribution of marker genes. Organoid formation was synergistically enhanced when the cells were cultured at increasing density. This effect is not due to diffusible signals but requires direct cell-to-cell contact. Our findings improve the development of cell-based assays to study culture-generated inner ear cell types.


Assuntos
Cóclea/fisiologia , Células Epiteliais/metabolismo , Organoides/metabolismo , Animais , Células Progenitoras Linfoides , Camundongos
19.
Nature ; 582(7812): 399-404, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494013

RESUMO

The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain1,2. Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met3-9. Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor ß (TGFß) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


Assuntos
Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Pele/citologia , Animais , Ectoderma/citologia , Feminino , Cabelo/transplante , Cor de Cabelo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/inervação , Folículo Piloso/transplante , Cabeça , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Organoides/crescimento & desenvolvimento , Organoides/inervação , Organoides/transplante , RNA-Seq , Análise de Célula Única , Pele/crescimento & desenvolvimento , Pele/inervação , Transplante de Pele
20.
Anat Rec (Hoboken) ; 303(3): 461-470, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489779

RESUMO

Loss of inner ear hair cells leads to incurable balance and hearing disorders because these sensory cells do not effectively regenerate in humans. A potential starting point for therapy would be the stimulation of quiescent progenitor cells within the damaged inner ear. Inner ear progenitor/stem cells, which have been described in rodent inner ears, would be principal candidates for such an approach. Despite the identification of progenitor cell populations in the human fetal cochlea and in the adult human spiral ganglion, no proliferative cell populations with the capacity to generate hair cells have been reported in vestibular and cochlear tissues of adult humans. The present study aimed at filling this gap by isolating colony-forming progenitor cells from surgery- and autopsy-derived adult human temporal bones in order to generate inner ear cell types in vitro. Sphere-forming and mitogen-responding progenitor cells were isolated from vestibular and cochlear tissues. Clonal spheres grown from adult human utricle and cochlear duct were propagated for a limited number of generations. When differentiated in absence of mitogens, the utricle-derived spheres robustly gave rise to hair cell-like cells, as well as to cells expressing supporting cell-, neuron-, and glial markers, indicating that the adult human utricle harbors multipotent progenitor cells. Spheres derived from the adult human cochlear duct did not give rise to hair cell-like or neuronal cell types, which is an indication that human cochlear cells have limited proliferative potential but lack the ability to differentiate into major inner ear cell types. Anat Rec, 303:461-470, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular/fisiologia , Orelha Interna/citologia , Adulto , Cóclea/citologia , Humanos , Gânglio Espiral da Cóclea/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA