Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(36): 18099-18106, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736293

RESUMO

We have found that the polarization dependence of Raman scattering in organic crystals at finite temperatures can only be described by a fourth-rank tensor formalism. This generalization of the second-rank Raman tensor stems from the effect of off-diagonal components in the crystal self-energy on the light scattering mechanism. We thus establish a novel manifestation of phonon-phonon interaction in inelastic light scattering, markedly separate from the better-known phonon lifetime.

2.
J Chem Theory Comput ; 19(13): 3889-3899, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37384777

RESUMO

The real-space pseudopotential approach is a well-known method for large-scale density functional theory (DFT) calculations. One of its main limitations, however, is the introduction of errors associated with the positioning of the underlying real-space grid, a phenomenon usually known as the "egg-box" effect. The effect can be controlled by using a finer grid, but this raises the cost of the calculations or even undermines their feasibility altogether. Therefore, there is ongoing interest in the reduction of the effect per a given real-space grid. Here, we present a finite difference interpolation of electron orbitals as a means of exploiting the high resolution of the pseudopotential to reduce egg-box effects systematically. We implement the method in PARSEC, a finite difference real-space pseudopotential DFT code, and demonstrate error mitigation and improved convergence at a low additional computational cost.

3.
Adv Mater ; 34(10): e2108352, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34981868

RESUMO

Understanding heat flow in layered transition metal dichalcogenide (TMD) crystals is crucial for applications exploiting these materials. Despite significant efforts, several basic thermal transport properties of TMDs are currently not well understood, in particular how transport is affected by material thickness and the material's environment. This combined experimental-theoretical study establishes a unifying physical picture of the intrinsic lattice thermal conductivity of the representative TMD MoSe2 . Thermal conductivity measurements using Raman thermometry on a large set of clean, crystalline, suspended crystals with systematically varied thickness are combined with ab initio simulations with phonons at finite temperature. The results show that phonon dispersions and lifetimes change strongly with thickness, yet the thinnest TMD films exhibit an in-plane thermal conductivity that is only marginally smaller than that of bulk crystals. This is the result of compensating phonon contributions, in particular heat-carrying modes around ≈0.1 THz in (sub)nanometer thin films, with a surprisingly long mean free path of several micrometers. This behavior arises directly from the layered nature of the material. Furthermore, out-of-plane heat dissipation to air molecules is remarkably efficient, in particular for the thinnest crystals, increasing the apparent thermal conductivity of monolayer MoSe2 by an order of magnitude. These results are crucial for the design of (flexible) TMD-based (opto-)electronic applications.

4.
Adv Mater ; 34(14): e2107932, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076969

RESUMO

Lead-based halide perovskite crystals are shown to have strongly anharmonic structural dynamics. This behavior is important because it may be the origin of their exceptional photovoltaic properties. The double perovskite, Cs2 AgBiBr6 , has been recently studied as a lead-free alternative for optoelectronic applications. However, it does not exhibit the excellent photovoltaic activity of the lead-based halide perovskites. Therefore, to explore the correlation between the anharmonic structural dynamics and optoelectronic properties in lead-based halide perovskites, the structural dynamics of Cs2 AgBiBr6 are investigated and are compared to its lead-based analog, CsPbBr3 . Using temperature-dependent Raman measurements, it is found that both materials are indeed strongly anharmonic. Nonetheless, the expression of their anharmonic behavior is markedly different. Cs2 AgBiBr6 has well-defined normal modes throughout the measured temperature range, while CsPbBr3 exhibits a complete breakdown of the normal-mode picture above 200 K. It is suggested that the breakdown of the normal-mode picture implies that the average crystal structure may not be a proper starting point to understand the electronic properties of the crystal. In addition to our main findings, an unreported phase of Cs2 AgBiBr6 is also discovered below ≈37 K.

5.
Phys Rev Lett ; 125(4): 045701, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794779

RESUMO

The lead-free halide double perovskite class of materials offers a promising venue for resolving issues related to toxicity of Pb and long-term stability of the lead-containing halide perovskites. We present a first-principles study of the lattice vibrations in Cs_{2}AgBiBr_{6}, the prototypical compound in this class and show that the lattice dynamics of Cs_{2}AgBiBr_{6} is highly anharmonic, largely in regards to tilting of AgBr_{6} and BiBr_{6} octahedra. Using an energy- and temperature-dependent phonon spectral function, we then show how the experimentally observed cubic-to-tetragonal phase transformation is caused by the collapse of a soft phonon branch. We finally reveal that the softness and anharmonicity of Cs_{2}AgBiBr_{6} yield an ultralow thermal conductivity, unexpected of high-symmetry cubic structures.

6.
Phys Rev Lett ; 121(22): 226603, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547621

RESUMO

Structural phase transitions and soft phonon modes pose a long-standing challenge to computing electron-phonon (e-ph) interactions in strongly anharmonic crystals. Here we develop a first-principles approach to compute e-ph scattering and charge transport in materials with anharmonic lattice dynamics. Our approach employs renormalized phonons to compute the temperature-dependent e-ph coupling for all phonon modes, including the soft modes associated with ferroelectricity and phase transitions. We show that the electron mobility in cubic SrTiO_{3} is controlled by scattering with longitudinal optical phonons at room temperature and with ferroelectric soft phonons below 200 K. Our calculations can accurately predict the temperature dependence of the electron mobility in SrTiO_{3} between 150-300 K, and reveal the microscopic origin of its roughly T^{-3} trend. Our approach enables first-principles calculations of e-ph interactions and charge transport in broad classes of crystals with phase transitions and strongly anharmonic phonons.

7.
Inorg Chem ; 57(20): 12709-12717, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30272966

RESUMO

This work presents an integrated approach to study the crystal chemistry and phonon heat capacity of complex layered oxides. Two quaternary delafossites are synthesized from ternary parent compounds and copper monohalides via a topochemical exchange reaction that preserves the honeycomb ordering of the parent structures. For each compound, Rietveld refinement of the powder X-ray diffraction patterns is examined in both monoclinic C2/ c and rhombohedral R3̅ m space groups. Honeycomb ordering occurs only in the monoclinic space group. Bragg peaks associated with honeycomb ordering acquire an asymmetric broadening known as the Warren line shape that is commonly observed in layered structures with stacking disorder. Detailed TEM analysis confirms honeycomb ordering within each layer in both title compounds and establishes a twinning between the adjacent layers instead of the more conventional shifting or skipping stacking faults. The structural model is then used to calculate phonon dispersions and heat capacity from first principles. In both compounds, the calculated heat capacity accurately describes the experimental data. The integrated approach presented here offers a platform to carefully analyze the phonon heat capacity in complex oxides where the crystal structure can produce magnetic frustration. Isolating phonon contribution from total heat capacity is a necessary and challenging step toward a quantitative study of spin liquid materials with exotic magnetic excitations such as spinons and Majorana fermions. A quantitative understanding of phonon density of states based on crystal chemistry as presented here also paves the way toward higher efficiency thermoelectric materials.

8.
Phys Rev Lett ; 119(18): 185901, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219537

RESUMO

Molecular crystals such as polyethylene are of intense interest as flexible thermal conductors, yet their intrinsic upper limits of thermal conductivity remain unknown. Here, we report a study of the vibrational properties and lattice thermal conductivity of a polyethylene molecular crystal using an ab initio approach that rigorously incorporates nuclear quantum motion and finite temperature effects. We obtain a thermal conductivity along the chain direction of around 160 W m^{-1} K^{-1} at room temperature, providing a firm upper bound for the thermal conductivity of this molecular crystal. Furthermore, we show that the inclusion of quantum nuclear effects significantly impacts the thermal conductivity by altering the phase space for three-phonon scattering. Our computational approach paves the way for ab initio studies and computational material discovery of molecular solids free of any adjustable parameters.

9.
Phys Rev Lett ; 117(20): 205502, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886477

RESUMO

We develop a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti_{1-x}Al_{x}N alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy corresponding to the true equilibrium state of the system. We demonstrate that the vibrational contribution including anharmonicity and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti_{1-x}Al_{x}N alloy, lowering the maximum temperature for the miscibility gap from 6560 to 2860 K. Our local chemical composition measurements on thermally aged Ti_{0.5}Al_{0.5}N alloys agree with the calculated phase diagram.

10.
J Phys Chem A ; 120(43): 8761-8768, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27700093

RESUMO

Free energy calculations at finite temperature based on ab initio molecular dynamics (AIMD) simulations have become possible, but they are still highly computationally demanding. Besides, achieving simultaneously high accuracy of the calculated results and efficiency of the computational algorithm is still a challenge. In this work we describe an efficient algorithm to determine accurate free energies of solids in simulations using the recently proposed temperature-dependent effective potential method (TDEP). We provide a detailed analysis of numerical approximations employed in the TDEP algorithm. We show that for a model system considered in this work, hcp Fe, the obtained thermal equation of state at 2000 K is in excellent agreement with the results of standard calculations within the quasiharmonic approximation.

11.
Phys Rev Lett ; 117(27): 276601, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28084752

RESUMO

The interest in improving the thermoelectric response of bulk materials has received a boost after it has been recognized that layered materials, in particular SnSe, show a very large thermoelectric figure of merit. This result has received great attention while it is now possible to conceive other similar materials or experimental methods to improve this value. Before we can now think of engineering this material it is important we understand the basic mechanism that explains this unusual behavior, where very low thermal conductivity and a high thermopower result from a delicate balance between the crystal and electronic structure. In this Letter, we present a complete temperature evolution of the Seebeck coefficient as the material undergoes a soft crystal transformation and its consequences on other properties within SnSe by means of first-principles calculations. Our results are able to explain the full range of considered experimental temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA