Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796616

RESUMO

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Assuntos
Encefalopatias , Tumor de Células da Granulosa , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Tumor de Células da Granulosa/genética , Mutação , Aneuploidia
2.
Nature ; 580(7804): 536-541, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322060

RESUMO

Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin1-3. Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin1. In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions4,5. Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma6,7, is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin8,9, SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31comet liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Securina , Separase/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Linhagem Celular , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Ligação Proteica , Securina/metabolismo , Separase/metabolismo , Coesinas
3.
Nature ; 580(7804): 542-547, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322059

RESUMO

Prolonged mitosis often results in apoptosis1. Shortened mitosis causes tumorigenic aneuploidy, but it is unclear whether it also activates the apoptotic machinery2. Separase, a cysteine protease and trigger of all eukaryotic anaphases, has a caspase-like catalytic domain but has not previously been associated with cell death3,4. Here we show that human cells that enter mitosis with already active separase rapidly undergo death in mitosis owing to direct cleavage of anti-apoptotic MCL1 and BCL-XL by separase. Cleavage not only prevents MCL1 and BCL-XL from sequestering pro-apoptotic BAK, but also converts them into active promoters of death in mitosis. Our data strongly suggest that the deadliest cleavage fragment, the C-terminal half of MCL1, forms BAK/BAX-like pores in the mitochondrial outer membrane. MCL1 and BCL-XL are turned into separase substrates only upon phosphorylation by NEK2A. Early mitotic degradation of this kinase is therefore crucial for preventing apoptosis upon scheduled activation of separase in metaphase. Speeding up mitosis by abrogation of the spindle assembly checkpoint results in a temporal overlap of the enzymatic activities of NEK2A and separase and consequently in cell death. We propose that NEK2A and separase jointly check on spindle assembly checkpoint integrity and eliminate cells that are prone to chromosome missegregation owing to accelerated progression through early mitosis.


Assuntos
Apoptose , Mitose , Separase/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Segregação de Cromossomos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Especificidade por Substrato , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo
4.
ACS Chem Biol ; 14(10): 2155-2159, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31553567

RESUMO

Separase, a cysteine protease of the CD clan, triggers chromosome segregation during mitosis by cleaving the cohesin ring entrapping the two sister chromatids. Deregulated separase activity is associated with aneuploidy, a hallmark of most human cancers. In fact, separase is highly overexpressed in many solid cancers, making it an attractive chemotherapeutic target. To identify small molecules capable of inhibiting separase in its complex cellular environment, we established a highly sensitive assay to quantify separase activity in cells and screened a 51 009-member library for separase inhibitors. In vitro assays confirmed that the identified compounds efficiently inhibited separase, while not affecting caspase-1, another CD-clan protease structurally related to separase. Importantly, HeLa cells with compromised separase activity displayed severe chromosome segregation defects upon compound treatment, confirming that the identified inhibitors are bioactive in tumor tissue culture cells. Structure-activity relationship studies succeeded in the optimization of the most promising inhibitor. Overall, this study demonstrates the feasibility of identifying separase-specific inhibitors, which serve as promising lead compounds for the development of clinically relevant separase inhibiting drugs.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Separase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Segregação de Cromossomos/efeitos dos fármacos , Ensaios Enzimáticos , Células HeLa , Humanos
5.
Cell Rep ; 25(9): 2317-2328.e5, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485802

RESUMO

The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans.


Assuntos
Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proliferação de Células , Células HCT116 , Células HeLa , Humanos , Proteínas Mad2/metabolismo , Mitose , Ubiquitinação
6.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30305303

RESUMO

Separase halves eukaryotic chromosomes in M-phase by cleaving cohesin complexes holding sister chromatids together. Whether this essential protease functions also in interphase and/or impacts carcinogenesis remains largely unknown. Here, we show that mammalian separase is recruited to DNA double-strand breaks (DSBs) where it is activated to locally cleave cohesin and facilitate homology-directed repair (HDR). Inactivating phosphorylation of its NES, arginine methylation of its RG-repeats, and sumoylation redirect separase from the cytosol to DSBs. In vitro assays suggest that DNA damage response-relevant ATM, PRMT1, and Mms21 represent the corresponding kinase, methyltransferase, and SUMO ligase, respectively. SEPARASE heterozygosity not only debilitates HDR but also predisposes primary embryonic fibroblasts to neoplasia and mice to chemically induced skin cancer. Thus, tethering of separase to DSBs and confined cohesin cleavage promote DSB repair in G2 cells. Importantly, this conserved interphase function of separase protects mammalian cells from oncogenic transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Quebras de DNA de Cadeia Dupla , Interfase , Proteínas de Neoplasias/metabolismo , Reparo de DNA por Recombinação , Separase/metabolismo , Neoplasias Cutâneas/enzimologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ativação Enzimática , Células HEK293 , Humanos , Ligases/genética , Ligases/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Separase/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controle
7.
Mol Cell ; 58(3): 495-506, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25921067

RESUMO

Ring-shaped cohesin keeps sister chromatids paired until cleavage of its Scc1/Rad21 subunit by separase triggers chromosome segregation in anaphase. Vertebrate separase is held inactive by mutually exclusive binding to securin or Cdk1-cyclin B1 and becomes unleashed only upon ubiquitin-dependent degradation of these regulators. Although most separase is usually found in association with securin, this anaphase inhibitor is dispensable for murine life while Cdk1-cyclin B1-dependent control of separase is essential. Here, we show that securin-independent inhibition of separase by Cdk1-cyclin B1 in early mitosis requires the phosphorylation-specific peptidyl-prolyl cis/trans isomerase Pin1. Furthermore, isomerization of previously securin-bound separase at the metaphase-to-anaphase transition renders it resistant to re-inhibition by residual securin. At the same time, isomerization also limits the half-life of separase's proteolytic activity, explaining how cohesin can be reloaded onto telophase chromatin in the absence of securin and cyclin B1 without being cleaved.


Assuntos
Segregação de Cromossomos/genética , Regulação Enzimológica da Expressão Gênica , Peptidilprolil Isomerase/genética , Separase/genética , Anáfase/genética , Proteína Quinase CDC2 , Cromátides/genética , Ciclina B1/química , Ciclina B1/genética , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Metáfase/genética , Microscopia de Fluorescência , Mitose/genética , Modelos Genéticos , Modelos Moleculares , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Conformação Proteica , Interferência de RNA , Securina/genética , Securina/metabolismo , Separase/química , Separase/metabolismo
8.
J Biol Chem ; 290(12): 8002-10, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25659430

RESUMO

Sister chromatid cohesion is established during replication by entrapment of both dsDNAs within the cohesin ring complex. It is dissolved in anaphase when separase, a giant cysteine endopeptidase, cleaves the Scc1/Rad21 subunit of cohesin, thereby triggering chromosome segregation. Separase is held inactive by association with securin until this anaphase inhibitor is destroyed at the metaphase-to-anaphase transition by ubiquitin-dependent degradation. The relevant ubiquitin ligase, the anaphase-promoting complex/cyclosome, also targets cyclin B1, thereby causing inactivation of Cdk1 and mitotic exit. Although separase is essential, securin knock-out mice are surprisingly viable and fertile. Capitalizing on our previous finding that Cdk1-cyclin B1 can also bind and inhibit separase, we investigated whether this kinase might be suitable to maintain faithful timing and execution of anaphase in the absence of securin. We found that, similar to securin, Cdk1-cyclin B1 regulates separase in both a positive and negative manner. Although securin associates with nascent separase to co-translationally assist proper folding, Cdk1-cyclin B1 acts on native state separase. Upon entry into mitosis, Cdk1-cyclin B1-dependent phosphorylation of Ser-1126 renders separase prone to inactivation by aggregation/precipitation. Stable association of Cdk1-cyclin B1 with phosphorylated separase counteracts this tendency and stabilizes separase in an inhibited yet activatable state. These opposing effects are suited to prevent premature cleavage of cohesin in early mitosis while ensuring timely activation of separase by anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. Coupling sister chromatid separation with subsequent exit from mitosis by this simplified mode might have been the common scheme of mitotic control prior to the evolution of securin.


Assuntos
Ciclina B1/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Securina/fisiologia , Separase/fisiologia , Sequência de Bases , Proteína Quinase CDC2 , Primers do DNA , Citometria de Fluxo , Células HEK293 , Humanos , Interferência de RNA
9.
EMBO J ; 33(10): 1134-47, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24781523

RESUMO

The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase-associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase-associated securin is destabilized by introduction of phosphorylation-mimetic aspartates or extinction of separase-associated PP2A activity. G2- or prometaphase-arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate-mutant securin. Thus, PP2A-dependent stabilization of separase-associated securin prevents precocious activation of separase during checkpoint-mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Fosfatase 2/metabolismo , Securina/metabolismo , Separase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Células HeLa , Humanos , Imunoprecipitação , Proteína Fosfatase 2/genética , Securina/genética , Separase/genética , Ubiquitinação
10.
Appl Environ Microbiol ; 77(17): 5842-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21784904

RESUMO

The concomitant occurrence of molecular hydrogen (H(2)) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H(2) production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H(2) producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/biossíntese , Hidrogenase/biossíntese , Oligoquetos/microbiologia , RNA Mensageiro/biossíntese , Transcrição Gênica , Animais , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/química , Trato Gastrointestinal/microbiologia , Hidrogenase/genética , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA