Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 149(13): 131102, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292193

RESUMO

Using first-principles calculations, we studied the adsorption of alkali ions in pure silica Linde Type A (LTA) zeolite. The probability of adsorbing alkali ions from solution and the driving force for ion exchange between Na+ and other alkali ions at the different adsorption sites were analyzed. From the calculated ion exchange isotherms, we show that it is possible to exchange Na+ with K+ and Rb+ in water, but that is not the case for systems in a vacuum. We also demonstrate that a solvation model should be used for the accurate representation of ion exchange in an LTA and that dispersion interactions should be introduced with care.

2.
Sci Rep ; 8(1): 3037, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445173

RESUMO

Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La2Ti2O7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO2(110) is a promising route to realize La2/3TiO3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

3.
J Am Chem Soc ; 139(46): 16852-16861, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069547

RESUMO

Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA