Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Biol Cell ; 35(4): ar59, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446639

RESUMO

GRP170 (Hyou1) is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds nonnative proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of mouse embryonic fibroblasts obtained from mice in which LoxP sites were engineered in the Hyou1 loci (Hyou1LoxP/LoxP). A doxycycline-regulated Cre recombinase was stably introduced into these cells. Induction of Cre resulted in depletion of Grp170 protein which culminated in cell death. As Grp170 levels fell we observed a portion of BiP fractionating with insoluble material, increased binding of BiP to a client with a concomitant reduction in its turnover, and reduced solubility of an aggregation-prone BiP substrate. Consistent with disrupted BiP functions, we observed reactivation of BiP and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and provide hypotheses as to why mutations in the Hyou1 locus are linked to human disease.


Assuntos
Desenvolvimento Embrionário , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Animais , Humanos , Camundongos , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Chaperonas Moleculares/metabolismo
2.
bioRxiv ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260467

RESUMO

The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.

3.
J Mol Biol ; 436(14): 168418, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38143019

RESUMO

It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.


Assuntos
Retículo Endoplasmático , Homeostase , Chaperonas Moleculares , Dobramento de Proteína , Retículo Endoplasmático/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Animais
4.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905119

RESUMO

GRP170, a product of the Hyou1 gene, is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds non-native proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of embryonic fibroblasts from mice in which LoxP sites were engineered in the Hyou1 loci ( Hyou1 LoxP/LoxP ). A doxycycline-regulated Cre recombinase was also stably introduced into these cells. Induction of Cre resulted in excision of Hyou1 and depletion of Grp170 protein, culminating in apoptotic cell death. As Grp170 levels fell we observed increased steady-state binding of BiP to a client, slowed degradation of a misfolded BiP substrate, and BiP accumulation in NP40-insoluble fractions. Consistent with disrupted BiP functions, we observed reactivation of BiP storage pools and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and insights into mutations in the Hyou1 locus and human disease.

6.
Fac Rev ; 11: 29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267301

RESUMO

Proteins that are expressed on membrane surfaces or secreted are involved in all aspects of cellular and organismal life, and as such require extremely high fidelity during their synthesis and maturation. These proteins are synthesized at the endoplasmic reticulum (ER) where a dedicated quality control system (ERQC) ensures only properly matured proteins reach their destinations. An essential component of this process is the identification of proteins that fail to pass ERQC and their retrotranslocation to the cytosol for proteasomal degradation. This study by Wu et al. reports a cryo-electron microscopy (cryo-EM) structure of the five-protein channel through which aberrant proteins are extracted from the ER, providing insights into how recognition of misfolded proteins is coupled to their transport through a hydrophobic channel that acts to thin the ER membrane, further facilitating their dislocation to the cytosol1.

7.
Front Cell Dev Biol ; 10: 924848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072336

RESUMO

Antibody monomers are produced from two immunoglobulin heavy chains and two light chains that are folded and assembled in the endoplasmic reticulum This process is assisted and monitored by components of the endoplasmic reticulum quality control machinery; an outcome made more fraught by the unusual genetic machinations employed to produce a seemingly unlimited antibody repertoire. Proper functioning of the adaptive immune system is as dependent on the success of this operation, as it is on the ability to identify and degrade those molecules that fail to reach their native state. In this study, two rate-limiting steps were identified in the degradation of a non-secreted κ light chain. Both focus on the constant domain (CL), which has evolved to fold rapidly and very stably to serve as a catalyst for the folding of the heavy chain CH1 domain. The first hurdle is the reduction of the disulfide bond in the CL domain, which is required for retrotranslocation to the cytosol. In spite of being reduced, the CL domain retains structure, giving rise to the second rate-limiting step, the unfolding of this domain at the proteasome, which results in a stalled degradation intermediate.

8.
Mol Cell ; 82(8): 1477-1491, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452616

RESUMO

Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Mamíferos , Controle de Qualidade , Transdução de Sinais
9.
Nat Commun ; 13(1): 1821, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383173

RESUMO

BiP co-chaperones ERdj4, ERdj5, and GRP170 associate in cells with peptides predicted to be aggregation prone. Here, extending these findings to a full-length protein, we examine two Interstitial Lung Disease-associated mutants (ILD) of surfactant protein C (SP-C). The TANGO algorithm, which identifies sequences prone to formation of ß strand aggregates, found three such regions in SP-C: the N-terminal transmembrane (TM) domain and two sites in the intermolecular chaperone BRICHOS domain. We show the ILD mutants disrupt di-sulfide bond formation in the BRICHOS domain and expose the aggregation-prone peptides leading to binding of ERdj4, ERdj5, and GRP170. The destabilized mutant BRICHOS domain fails to properly insert its TM region in the ER membrane, exposing part of the N-terminal TM domain site. Our studies with ILD-associated mutant proteins provide insights into the specificity of ERdj4, ERdj5, and GRP170, identify context-dependent differences in their binding, and reveal molecular consequences of disease-associated mutants on folding.


Assuntos
Chaperonas Moleculares , Proteína C Associada a Surfactante Pulmonar , Sítios de Ligação , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Dobramento de Proteína , Proteína C Associada a Surfactante Pulmonar/metabolismo
10.
iScience ; 25(4): 104100, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35402877

RESUMO

Pediatric osteosarcomas (OS) exhibit extensive genomic instability that has complicated the identification of new targeted therapies. We found the vast majority of 108 patient tumor samples and patient-derived xenografts (PDXs), which display an unusually dilated endoplasmic reticulum (ER), have reduced expression of four COPII vesicle components that trigger aberrant accumulation of procollagen-I protein within the ER. CRISPR activation technology was used to increase the expression of two of these, SAR1A and SEC24D, to physiological levels. This was sufficient to resolve the dilated ER morphology, restore collagen-I secretion, and enhance secretion of some extracellular matrix (ECM) proteins. However, orthotopic xenograft growth was not adversely affected by restoration of only SAR1A and SEC24D. Our studies reveal the mechanism responsible for the dilated ER that is a hallmark characteristic of OS and identify a highly conserved molecular signature for this genetically unstable tumor. Possible relationships of this phenotype to tumorigenesis are discussed.

11.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104250

RESUMO

Molecular chaperones are responsible for maintaining cellular homeostasis, and one such chaperone, GRP170, is an endoplasmic reticulum (ER) resident that oversees both protein biogenesis and quality control. We previously discovered that GRP170 regulates the degradation and assembly of the epithelial sodium channel (ENaC), which reabsorbs sodium in the distal nephron and thereby regulates salt-water homeostasis and blood pressure. To define the role of GRP170 - and, more generally, molecular chaperones in kidney physiology - we developed an inducible, nephron-specific GRP170-KO mouse. Here, we show that GRP170 deficiency causes a dramatic phenotype: profound hypovolemia, hyperaldosteronemia, and dysregulation of ion homeostasis, all of which are associated with the loss of ENaC. Additionally, the GRP170-KO mouse exhibits hallmarks of acute kidney injury (AKI). We further demonstrate that the unfolded protein response (UPR) is activated in the GRP170-deficient mouse. Notably, the UPR is also activated in AKI when originating from various other etiologies, including ischemia, sepsis, glomerulonephritis, nephrotic syndrome, and transplant rejection. Our work establishes the central role of GRP170 in kidney homeostasis and directly links molecular chaperone function to kidney injury.


Assuntos
Injúria Renal Aguda , Proteínas de Choque Térmico HSP70 , Animais , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Chaperonas Moleculares/genética
12.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557244

RESUMO

Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1's function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1's functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1's NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.


Assuntos
Suscetibilidade a Doenças , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Nível de Saúde , Chaperonas Moleculares/metabolismo , Animais , Biomarcadores , Gerenciamento Clínico , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Estudos de Associação Genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/etiologia , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/terapia , Relação Estrutura-Atividade , Resposta a Proteínas não Dobradas
13.
Mol Cell Endocrinol ; 500: 110630, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31669350

RESUMO

Secreted, plasma membrane, and resident proteins of the secretory pathway are synthesized in the endoplasmic reticulum (ER) where they undergo post-translational modifications, oxidative folding, and subunit assembly in tightly monitored processes. An ER quality control (ERQC) system oversees protein maturation and ensures that only those reaching their native state will continue trafficking into the secretory pathway to reach their final destinations. Those that fail must be recognized and eliminated to maintain ER homeostasis. Two cellular mechanisms have been identified to rid the ER of terminally unfolded, misfolded, and aggregated proteins. ER-associated degradation (ERAD) was discovered nearly 30 years ago and entails the identification of improperly matured secretory pathway proteins and their retrotranslocation to the cytosol for degradation by the ubiquitin-proteasome system. ER-phagy has been more recently described and caters to larger, more complex proteins and protein aggregates that are not readily handled by ERAD. This pathway has unique upstream components and relies on the same downstream effectors of autophagy used in other cellular processes to deliver clients to lysosomes for degradation. In this review, we describe the main elements of ERQC, ERAD, and ER-phagy and focus on recent advances in these fields.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Degradação Associada com o Retículo Endoplasmático , Humanos , Dobramento de Proteína , Transporte Proteico , Via Secretória
14.
J Biol Chem ; 294(6): 2098-2108, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30563838

RESUMO

The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fetais/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Proteínas Fetais/genética , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética
15.
Dis Model Mech ; 11(5)2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29666155

RESUMO

Mutations in SIL1, a cofactor for the endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disorder. Using a mouse model, we characterized molecular aspects of the progressive myopathy associated with MSS. Proteomic profiling of quadriceps at the onset of myopathy revealed that SIL1 deficiency affected multiple pathways critical to muscle physiology. We observed an increase in ER chaperones prior to the onset of muscle weakness, which was complemented by upregulation of multiple components of cellular protein degradation pathways. These responses were inadequate to maintain normal expression of secretory pathway proteins, including insulin and IGF-1 receptors. There was a paradoxical enhancement of downstream PI3K-AKT-mTOR signaling and glucose uptake in SIL1-disrupted skeletal muscles, all of which were insufficient to maintain skeletal muscle mass. Together, these data reveal a disruption in ER homeostasis upon SIL1 loss, which is countered by multiple compensatory responses that are ultimately unsuccessful, leading to trans-organellar proteostasis collapse and myopathy.


Assuntos
Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Proteostase , Envelhecimento/patologia , Animais , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático , Insulina/metabolismo , Masculino , Camundongos , Modelos Biológicos , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Proteoma/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
16.
Mol Cell ; 63(5): 739-52, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27546788

RESUMO

Protein maturation in the endoplasmic reticulum is controlled by multiple chaperones, but how they recognize and determine the fate of their clients remains unclear. We developed an in vivo peptide library covering substrates of the ER Hsp70 system: BiP, Grp170, and three of BiP's DnaJ-family co-factors (ERdj3, ERdj4, and ERdj5). In vivo binding studies revealed that sites for pro-folding chaperones BiP and ERdj3 were frequent and dispersed throughout the clients, whereas Grp170, ERdj4, and ERdj5 specifically recognized a distinct type of rarer sequence with a high predicted aggregation potential. Mutational analyses provided insights into sequence recognition characteristics for these pro-degradation chaperones, which could be readily introduced or disrupted, allowing the consequences for client fates to be determined. Our data reveal unanticipated diversity in recognition sequences for chaperones; establish a sequence-encoded interplay between protein folding, aggregation, and degradation; and highlight the ability of clients to co-evolve with chaperones, ensuring quality control.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Proteínas de Membrana/química , Chaperonas Moleculares/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Regulação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biblioteca de Peptídeos , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Transfecção , Transgenes
18.
Mol Cell ; 62(4): 491-506, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27203176

RESUMO

ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Encéfalo/enzimologia , Retículo Endoplasmático/enzimologia , Fibroblastos/enzimologia , Complexo de Golgi/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Encéfalo/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/enzimologia , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/patologia , Feminino , Genótipo , Complexo de Golgi/patologia , Células HEK293 , Homeostase , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Interferência de RNA , Fatores de Tempo , Transfecção , Resposta a Proteínas não Dobradas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
Elife ; 4: e08961, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26473973

RESUMO

DnaK/Hsp70 chaperones form oligomers of poorly understood structure and functional significance. Site-specific proteolysis and crosslinking were used to probe the architecture of oligomers formed by the endoplasmic reticulum (ER) Hsp70, BiP. These were found to consist of adjacent protomers engaging the interdomain linker of one molecule in the substrate binding site of another, attenuating the chaperone function of oligomeric BiP. Native gel electrophoresis revealed a rapidly-modulated reciprocal relationship between the burden of unfolded proteins and BiP oligomers and slower equilibration between oligomers and inactive, covalently-modified BiP. Lumenal ER calcium depletion caused rapid oligomerization of mammalian BiP and a coincidental diminution in substrate binding, pointing to the relative inertness of the oligomers. Thus, equilibration between inactive oligomers and active monomeric BiP is poised to buffer fluctuations in ER unfolded protein load on a rapid timescale attainable neither by inter-conversion of active and covalently-modified BiP nor by the conventional unfolded protein response.


Assuntos
Proteínas de Choque Térmico/metabolismo , Multimerização Proteica , Animais , Cricetinae , Eletroforese , Retículo Endoplasmático/enzimologia , Chaperona BiP do Retículo Endoplasmático , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
20.
J Biol Chem ; 290(44): 26821-31, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26400083

RESUMO

In eukaryotic cells, secretory pathway proteins must pass stringent quality control checkpoints before exiting the endoplasmic reticulum (ER). Acquisition of native structure is generally considered to be the most important prerequisite for ER exit. However, structurally detailed protein folding studies in the ER are few. Furthermore, aberrant ER quality control decisions are associated with a large and increasing number of human diseases, highlighting the need for more detailed studies on the molecular determinants that result in proteins being either secreted or retained. Here we used the clonotypic αß chains of the T cell receptor (TCR) as a model to analyze lumenal determinants of ER quality control with a particular emphasis on how proper assembly of oligomeric proteins can be monitored in the ER. A combination of in vitro and in vivo approaches allowed us to provide a detailed model for αßTCR assembly control in the cell. We found that folding of the TCR α chain constant domain Cα is dependent on αß heterodimerization. Furthermore, our data show that some variable regions associated with either chain can remain incompletely folded until chain pairing occurs. Together, these data argue for template-assisted folding at more than one point in the TCR α/ß assembly process, which allows specific recognition of unassembled clonotypic chains by the ER chaperone machinery and, therefore, reliable quality control of this important immune receptor. Additionally, it highlights an unreported possible limitation in the α and ß chain combinations that comprise the T cell repertoire.


Assuntos
Calnexina/química , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Animais , Células COS , Calnexina/genética , Calnexina/metabolismo , Chlorocebus aethiops , Células Clonais , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Mutação , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteólise , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA