Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Transgenic Res ; 32(4): 321-337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37278871

RESUMO

Confined field trials (CFT) of genetically engineered (GE) crops are used to generate data to inform environmental risk assessments (ERA). ERAs are required by regulatory authorities before novel GE crops can be released for cultivation. The transportability of CFT data to inform risk assessment in countries other than those where the CFT was conducted has been discussed previously in an analysis showing that the primary difference between CFT locations potentially impacting trial outcomes is the physical environment, particularly the agroclimate. This means that data from trials carried out in similar agroclimates could be considered relevant and sufficient to satisfy regulatory requirements for CFT data, irrespective of the country where the CFTs are conducted. This paper describes the development of an open-source tool to assist in determining the transportability of CFT data. This tool provides agroclimate together with overall crop production information to assist regulators and applicants in making informed choices on whether data from previous CFTs can inform an environmental risk assessment in a new country, as well as help developers determine optimal locations for planning future CFTs. The GEnZ Explorer is a freely available, thoroughly documented, and open-source tool that allows users to identify the agroclimate zones that are relevant for the production of 21 major crops and crop categories or to determine the agroclimatic zone at a specific location. This tool will help provide additional scientific justification for CFT data transportability, along with spatial visualization, to help ensure regulatory transparency.


Assuntos
Meio Ambiente , Engenharia Genética , Plantas Geneticamente Modificadas/genética , Medição de Risco , Produtos Agrícolas/genética
2.
Integr Environ Assess Manag ; 19(1): 175-190, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35678145

RESUMO

Decision-making for pesticide registration by the US Environmental Protection Agency (USEPA) relies upon crop-specific scenarios in a tiered framework. These standard modeling scenarios are stated to represent "…sites expected to produce runoff greater than would be expected at 90% of the sites for a given crop/use." This study developed a novel approach to compare the pesticide runoff + erosion (SumRE ) mass flux potential of a hydrophobic chemical using 36 of these ecological regulatory scenarios with national-scale distributions of modeled SumRE from over 750 000 USA-wide agricultural catchments to provide real-world context for the simulated transport predictions used for regulatory decision-making. For the standard scenarios and national scale modeling, "edge of field" SumRE mass flux was estimated using regulatory guidance for a hypothetical pyrethroid. The national-scale simulations were developed using publicly available soil, hydrography, and crop occurrence /regional timings databases. Relevant soil and crop combinations identified by spatial overlay along with weather data were used in a regulatory model to generate daily SumRE estimates, which were assigned to the catchments. The resulting average annual total SumRE mass fluxes were ranked to produce distributions to compare with the standard regulatory scenario outputs. These comparisons showed that SumRE flux from 25 of the 36 USEPA ecological regulatory crop-specific scenarios modeled ranked above the 99th percentile of pyrethroid runoff + erosion vulnerability from any catchment growing that crop; SumRE flux from six scenarios was more severe than any catchment. For 12 USEPA regulatory scenarios, the resulting eroded sediment corresponds to highly erodible land (HEL), which the US Department of Agriculture mandates should not be cropped without substantial additional erosion prevention controls for sustainability. Since the pesticide regulatory framework already incorporates many acknowledged assumptions to ensure it conservatively meets protection goals, these HEL observations suggest that the standard scenarios overestimate potential aquatic exposure and that the regulatory process is more protective than intended. Integr Environ Assess Manag 2023;19:175-190. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Praguicidas , Piretrinas , Poluentes Químicos da Água , Estados Unidos , Praguicidas/análise , United States Environmental Protection Agency , Poluentes Químicos da Água/análise , Solo/química , Medição de Risco
3.
Chem Res Toxicol ; 34(9): 2045-2053, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436867

RESUMO

Synthetic pyrethroids are frequently detected as trace contaminants in sediment and natural waters. Because of the importance of measuring both total and freely available concentrations for ecotoxicity evaluations, solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry using negative chemical ionization (NCI-GC-MS) was investigated as an analytical technique. Automated SPME-NCI-GC-MS quantification of freely dissolved (and thus potentially bioavailable) pyrethroids in aqueous samples containing dissolved organic matter (DOM) was successfully applied. The introduction of stable isotope-labeled pyrethroid calibration standards into the water sample allows for the simultaneous determination of total concentrations. Because pyrethroids adsorb rapidly to container walls (especially in calibration standard solutions without DOM) it was necessary to develop a technique to minimize the resulting time-dependent losses from calibration standard solutions in autosampler vials as they await analysis. A staggered preparation of these analytical calibration standards immediately prior to analysis was shown to ameliorate this problem. The developed method provides accurate and reproducible results for aqueous samples containing a range of dissolved organic matter concentrations (e.g., sediment pore water or sediment/water mixtures) and yields practical benefits in comparison to conventional analysis methods, such as reduced sample volume requirements, reduced solvent consumption, and fewer sample manipulations, and makes simultaneous measurements of freely dissolved/bioavailable pyrethroids and total pyrethroids possible.


Assuntos
Piretrinas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sedimentos Geológicos/análise , Limite de Detecção , Lagoas/análise , Piretrinas/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Microextração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação
4.
Integr Environ Assess Manag ; 16(2): 197-210, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31589364

RESUMO

Pesticide spray drift is potentially a significant source of exposure to off-target, adjacent aquatic habitats. To estimate the magnitude of pesticide drift from aerial or ground applications, regulatory agencies in North America, Europe, and elsewhere rely on spray drift models to predict spray drift deposition for risk assessments. Refined assessments should ultimately depend on best-available data for exposure modeling. However, when developing lower tier "screening" assessments designed to indicate whether further refinement is needed, regulators often make conservative assumptions with a resulting increased level of uncertainty in estimating environmental exposure or risk. In the United States, it is generally accepted that, to ensure conservative regulatory assessments, it is reasonable to assume that the wind speed might be 4.47 m/s (10 miles per hour [mph]), the relative humidity and temperature are highly conducive to drift, and the wind is blowing directly toward a receiving water for any given single spray event in a season. However, what is the probability these conditions will all co-occur for each of 4 sequential spray events spaced a week apart (common practice for insecticides)? The refined approach in the present study investigates this question using hourly meteorological data sets for 5 United States Environmental Protection Agency (USEPA) standard crop scenarios to understand how real-world data can reduce unnecessary uncertainty for sequential applications. The impact of wind speeds, temperatures, relative humidity, and wind direction at different times of day on annual drift loadings has been examined using a stepwise process for comparison with corresponding regulatory default loading estimates. The impacts on drift estimates were significant; interestingly, the time of day of the applications impacted variability more than did the selected crop scenario. When all these real-world factors were considered, estimated 30-y total drift loads ranged from 2% to 5% greater than the default estimate (2 of 30 cases due to high afternoon wind speeds) to 51% to 86% reductions (25 of 30 cases) with an overall average reduction of 63%. Integr Environ Assess Manag 2020;16:197-210. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Exposição Ambiental , Praguicidas , Vento , Agricultura , Europa (Continente) , Humanos , América do Norte , Medição de Risco
5.
Pest Manag Sci ; 72(11): 2099-2109, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27299476

RESUMO

BACKGROUND: The objective was to refine the standard regulatory exposure scenario used in plant protection product authorisations by developing a more realistic landscape-related GIS-based exposure assessment for terrestrial non-target arthropods. We quantified the proportion of adjacent off-target area in agricultural landscapes potentially exposed to insecticide drift from applications of the active substance fenoxycarb. High-resolution imagery, landscape classification and subsequent stepwise analysis of a whole landscape using drift and interception functions were applied to selected areas in representative fruit-producing regions in Germany. RESULTS: Even under worst-case assumptions regarding treated area, use rate and drift, less than 12% of the non-agricultural habitat area would potentially be exposed to fenoxycarb drift above regulatory acceptable concentrations. Additionally, if the filtering effect of tall vegetation were taken into account, this number would decrease to 6.6%. Further refinements to landscape elements and application conditions indicate that less than 5% of the habitat area might be exposed above regulatory acceptable concentrations, meaning that 95% of the non-agricultural habitat area will be unimpacted (i.e. no unacceptable effects) and can serve as refuge for recolonisation. CONCLUSION: Approaches and tools are proposed for standardisable and transparent refinements in regulatory risk assessments on the landscape level. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Inseticidas/análise , Fenilcarbamatos/análise , Agricultura , Alemanha , Medição de Risco/métodos
6.
Environ Toxicol Chem ; 35(2): 340-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26235307

RESUMO

Washoff of 17 pyrethroid products resulting from a 1-h, 25.4-mm rainfall occurring 24 h after application was measured in indoor studies with concrete slabs. These products included different pyrethroid active ingredients and a range of formulation types. Based on this replicated study, 5 product pairs with contrasting washoff behaviors were chosen for an outdoor study using 6 full-scale house fronts in central California. Products in 4 of these pairs were applied once to different rectangular areas on the driveway (1 product in each pair to 3 house lots and the other to the remaining 3 house lots). The products in the fifth pair were applied 3 times at 2-mo intervals to vertical stucco walls above the driveway. All house lots received natural and simulated rainfall over 7 mo. Indoor studies showed differences up to 170-fold between paired products, whereas the maximum difference between paired products in the field was only 5-fold. In the pair applied to the wall, 1 product had 91 times the washoff of the other in the indoor study, whereas in the field the same product had 15% lower washoff. These results show that, although the formulation may influence washoff under actual use conditions, its influence is complex and not always as predicted by indoor experiments. Because the formulation also affects insect control, washoff research needs to be conducted together with efficacy testing.


Assuntos
Inseticidas/análise , Piretrinas/análise , Poluentes Químicos da Água/análise , Abastecimento de Água , California , Química Farmacêutica , Habitação , Controle de Insetos , Chuva
7.
Transgenic Res ; 23(6): 1025-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24733670

RESUMO

It is commonly held that confined field trials (CFTs) used to evaluate the potential adverse environmental impacts of a genetically engineered (GE) plant should be conducted in each country where cultivation is intended, even when relevant and potentially sufficient data are already available from studies conducted elsewhere. The acceptance of data generated in CFTs "out of country" can only be realized in practice if the agro-climatic zone where a CFT is conducted is demonstrably representative of the agro-climatic zones in those geographies to which the data will be transported. In an attempt to elaborate this idea, a multi-disciplinary Working Group of scientists collaborated to develop a conceptual framework and associated process that can be used by the regulated and regulatory communities to support transportability of CFT data for environmental risk assessment (ERA). As proposed here, application of the conceptual framework provides a scientifically defensible process for evaluating if existing CFT data from remote sites are relevant and/or sufficient for local ERAs. Additionally, it promotes a strategic approach to identifying CFT site locations so that field data will be transportable from one regulatory jurisdiction to another. Application of the framework and process should be particularly beneficial to public sector product developers and small enterprises that develop innovative GE events but cannot afford to replicate redundant CFTs, and to regulatory authorities seeking to improve the deployment of limited institutional resources.


Assuntos
Qualidade de Produtos para o Consumidor , Exposição Ambiental/prevenção & controle , Plantas Geneticamente Modificadas/efeitos adversos , Medição de Risco/métodos , Estatística como Assunto , Humanos
8.
Environ Toxicol Chem ; 33(2): 302-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24130058

RESUMO

The use of pesticides by homeowners or pest-control operators in urban settings is common, yet contributions of washoff from these materials are not easily understood. In the present study, cypermethrin, formulated as Cynoff EC (emulsifiable concentrate) and Cynoff WP (wettable powder) insecticides, was applied at typical rates to 10 different building material surfaces to examine its washoff potential from each surface. Using an indoor rainfall simulator, a 1-h rainfall event was generated and washoff samples were collected from 3 replicates of each surface type. Washoff was analyzed for cypermethrin using gas chromatography-negative chemical ionization mass spectrometry. An analysis of variance for a split-plot design was performed. Many building materials had similar water runoff masses, but asphalt resulted in significantly reduced average water runoff masses (73% less). The Cynoff WP formulation generally produced greater cypermethrin washoff than the Cynoff EC formulation. In addition, results for both the WP and EC formulations indicated that smoother surfaces such as vinyl and aluminum siding had higher washoff (1.0-14.1% mean percentage of applied mass). Cypermethrin washoff from rough absorptive surfaces like concrete and stucco was lower and ranged from 0.1 to 1.3% and from 0 to 0.2%, respectively, mean percentage of applied mass. Both building material surface and formulation play a significant role in cypermethrin washoff.


Assuntos
Materiais de Construção , Inseticidas/análise , Piretrinas/análise , Inseticidas/química , Piretrinas/química , Chuva , Propriedades de Superfície
9.
Environ Toxicol Chem ; 33(1): 52-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105831

RESUMO

The major pathways for transport of pyrethroids were determined in runoff studies conducted at a full-scale test facility in central California, USA. The 6 replicate house lots were typical of front lawns and house fronts of California residential developments and consisted of stucco walls, garage doors, driveways, and residential lawn irrigation sprinkler systems. Each of the 6 lots also included a rainfall simulator to generate artificial rainfall events. Different pyrethroids were applied to 5 surfaces­driveway, garage door and adjacent walls, lawn, lawn perimeter (grass near the house walls), and house walls above grass. The volume of runoff water from each house lot was measured, sampled, and analyzed to determine the amount of pyrethroid mass lost from each surface. Applications to 3 of the house lots were made using the application practices typically used prior to recent label changes, and applications were made to the other 3 house lots according to the revised application procedures. Results from the house lots using the historic application procedures showed that losses of the compounds applied to the driveway and garage door (including the adjacent walls) were 99.75% of total measured runoff losses. The greatest losses were associated with significant rainfall events rather than lawn irrigation events. However, runoff losses were 40 times less using the revised application procedures recently specified on pyrethroid labels.


Assuntos
Inseticidas/análise , Piretrinas/análise , Movimentos da Água , Poluentes Químicos da Água/análise , California , Materiais de Construção , Habitação , Poaceae , Chuva , Solo , Poluição da Água/prevenção & controle
10.
Environ Toxicol Chem ; 32(10): 2402-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24006334

RESUMO

The comprehensive aquatic systems model for atrazine (CASM(ATZ)) estimates the potential toxic effects of atrazine on populations of aquatic plants and consumers in a generic lower-order midwestern stream. The CASM(ATZ) simulates the daily production of 20 periphyton and 6 aquatic vascular plant species. The modeled consumer community consists of 17 functionally defined species of zooplankton, benthic invertebrates, bacteria, and fish. Daily values of population biomass (grams of carbon per square meter) are calculated as nonlinear functions of population bioenergetics, physical-chemical environmental parameters, grazing/predator-prey interactions, and population-specific direct and indirect responses to atrazine. The CASM(ATZ) uses Monte Carlo methods to characterize the implications of phenotypic variability, environmental variability, and uncertainty associated with atrazine toxicity data in estimating the potential impacts of time-varying atrazine exposures on population biomass and community structure. Comparisons of modeled biomass values for plants and consumers with published data indicate that the generic reference simulation realistically describes ecological production in lower-order midwestern streams. Probabilistic assessments were conducted using the CASM(ATZ) to evaluate potential modeled changes in plant community structure resulting from measured atrazine exposure profiles in 3 midwestern US streams representing watersheds highly vulnerable to runoff. Deviation in the median values of maximum 30-d average Steinhaus similarity index ranged from 0.09% to 2.52% from the reference simulation. The CASM(ATZ) could therefore be used for the purposes of risk assessment by comparison of site monitoring-based model output to a biologically relevant Steinhaus similarity index level of concern. Used as a generic screening technology or in site-specific applications, the CASM(AT) provides an effective, coherent, and transparent modeling framework for assessing ecological risks posed by pesticides in lower-order streams.


Assuntos
Atrazina/toxicidade , Biomassa , Biota , Modelos Teóricos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bactérias , Peixes , Cadeia Alimentar , Invertebrados , Plantas , Medição de Risco , Rios , Zooplâncton
11.
J Agric Food Chem ; 55(14): 5408-15, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17552535

RESUMO

There has been interest within the pesticide regulatory community in developing a tool that can provide estimates of potential pesticide exposure in shallow groundwater across an intended use area. Therefore, industry initiated an investigative project based on the PRZM 3.12 model, which uses regional soils and weather in an easy to use interface. The goal of this proof-of-concept is to facilitate the refinement of groundwater exposure estimates. The focus of this paper is to report the effectiveness of the tool as a regional estimator of potential groundwater contamination.


Assuntos
Praguicidas/análise , Poluição Química da Água/análise , Água/química , Arizona , Georgia , North Dakota , Pennsylvania , Solo/análise
12.
J Agric Food Chem ; 53(22): 8840-7, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16248594

RESUMO

Crop-protection compounds are useful tools that enhance the quality of the food we enjoy. However, crop-protection products can enter aquatic systems either by direct or by indirect application. To better understand the possible frequency and magnitude of exposure to water resources, the regulatory community has developed a set of relatively straightforward models for estimating exposure to these water systems. The focus of this research was to compare how well the estimates of exposure to drinking water based on model calculations relate to actual monitoring data. Physical/chemical property data were entered in the EPA's exposure model FIRST and into PRZM/EXAMS. The predictions from FIRST and PRZM/EXAMS were then compared to actual monitoring data from a USGS/EPA cooperative program, which monitored for pesticides in vulnerable surface drinking water supplies during 1999 and 2000. Results from this examination indicate the exposure from the models can overpredict concentrations found in water by several orders of magnitude. An overprediction factor is presented that corrects model predictions to more closely approximate concentrations found in reservoirs (p = 0.05).


Assuntos
Exposição Ambiental/análise , Exposição Ambiental/legislação & jurisprudência , Monitoramento Ambiental , Poluentes da Água/análise , Abastecimento de Água , Modelos Teóricos , Praguicidas/análise , Estados Unidos , United States Environmental Protection Agency
13.
J Environ Qual ; 34(3): 793-803, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843642

RESUMO

The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.


Assuntos
Herbicidas/análise , Toluidinas/análise , Poluentes da Água/análise , Agricultura , Monitoramento Ambiental , Solo , Estados Unidos
14.
J Environ Qual ; 34(3): 877-89, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843651

RESUMO

A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.


Assuntos
Herbicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Monitoramento Ambiental , Medição de Risco , Estados Unidos , Abastecimento de Água , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA