RESUMO
BACKGROUND: Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS: Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS: A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS: This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION: CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Antígeno B7-H1 , Biomarcadores TumoraisRESUMO
Background: Colon cancer is a heterogeneous disease and consists of various molecular subtypes. Despite advances in high-throughput expression profiling, limitations remain in predicting clinical outcome and assigning specific treatment to individual cases. Tumor-immune interactions play a critical role, with tumors that activate the immune system having better outcome for the patient. The localization of T cells within tumor epithelium, to enable direct contact, is essential for antitumor function, but bulk DNA/RNA sequencing data lacks spatial distribution information. In this study, we provide spatial T cell tumor distribution and connect these data with previously determined genomic data in the AC-ICAM colon cancer patient cohort. Methods: Colon cancer patients (n=90) with transcriptome data available were selected. We used a custom multiplex immunofluorescence assay on colon tumor tissue sections for quantifying T cell subsets spatial distribution in the tumor microenvironment, in terms of cell number, location, mutual distance, and distance to tumor cells. Statistical analyses included the previously determined Immunologic Constant of Rejection (ICR) transcriptome correlation and patient survival, revealing potential prognostic value in T cell spatial distribution. Results: T cell phenotypes were characterized and CD3+CD8-FoxP3- T cells were found to be the predominant tumor-infiltrating subtype while CD3+FoxP3+ T cells and CD3+CD8+ T cells showed similar densities. Spatial distribution analysis elucidated that proliferative T cells, characterized by Ki67 expression, and Granzyme B-expressing T cells were predominantly located within the tumor epithelium. We demonstrated an increase in immune cell density and a decrease in the distance of CD3+CD8+ T cells to the nearest tumor cell, in the immune active, ICR High, immune subtypes. Higher densities of stromal CD3+FoxP3+ T cells showed enhanced survival outcomes, and patients exhibited superior clinical benefits when greater spatial distances were observed between CD3+CD8-FoxP3- or CD3+CD8+ T cells and CD3+FoxP3+ T cells. Conclusion: Our study's in-depth analysis of the spatial distribution and densities of major T cell subtypes within the tumor microenvironment has provided valuable information that paves the way for further research into the intricate relationships between immune cells and colon cancer development.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias do Colo , Humanos , Prognóstico , Subpopulações de Linfócitos T , Neoplasias do Colo/patologia , Fatores de Transcrição Forkhead/análise , Microambiente TumoralRESUMO
BACKGROUND: Lack of Schlafen family member 11 (SLFN11) expression has been recently identified as a dominant genomic determinant of response to DNA damaging agents in numerous cancer types. Thus, several strategies aimed at increasing SLFN11 are explored to restore chemosensitivity of refractory cancers. In this study, we examined various approaches to elevate SLFN11 expression in breast cancer cellular models and confirmed a corresponding increase in chemosensitivity with using the most successful efficient one. As oncogenic transcriptomic downregulation is often driven by methylation of the promotor region, we explore the demethylation effect of 5-aza-2'-deoxycytidine (decitabine), on the SLFN11 gene. Since SLFN11 has been reported as an interferon inducible gene, and interferon is secreted during an active anti-tumor immune response, we investigated the in vitro effect of IFN-γ on SLFN11 expression in breast cancer cell lines. As a secondary approach to pick up cross talk between immune cells and SLFN11 expression we used indirect co-culture of breast cancer cells with activated PBMCs and evaluated if this can drive SLFN11 upregulation. Finally, as a definitive and specific way to modulate SLFN11 expression we implemented SLFN11 dCas9 (dead CRISPR associated protein 9) systems to specifically increase or decrease SLFN11 expression. RESULTS: After confirming the previously reported correlation between methylation of SLFN11 promoter and its expression across multiple cell lines, we showed in-vitro that decitabine and IFN-γ could increase moderately the expression of SLFN11 in both BT-549 and T47D cell lines. The use of a CRISPR-dCas9 UNISAM and KRAB system could increase or decrease SLFN11 expression significantly (up to fivefold), stably and specifically in BT-549 and T47D cancer cell lines. We then used the modified cell lines to quantify the alteration in chemo sensitivity of those cells to treatment with DNA Damaging Agents (DDAs) such as Cisplatin and Epirubicin or DNA Damage Response (DDRs) drugs like Olaparib. RNAseq was used to elucidate the mechanisms of action affected by the alteration in SLFN11 expression. In cell lines with robust SLFN11 promoter methylation such as MDA-MB-231, no SLFN11 expression could be induced by any approach. CONCLUSION: To our knowledge this is the first report of the stable non-lethal increase of SLFN11 expression in a cancer cell line. Our results show that induction of SLFN11 expression can enhance DDA and DDR sensitivity in breast cancer cells and dCas9 systems may represent a novel approach to increase SLFN11 and achieve higher sensitivity to chemotherapeutic agents, improving outcome or decreasing required drug concentrations. SLFN11-targeting therapies might be explored pre-clinically to develop personalized approaches.
RESUMO
The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.
Assuntos
Biomarcadores Tumorais , Neoplasias do Colo , Humanos , Estudos de Coortes , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Transcriptoma , Microambiente TumoralRESUMO
The purpose of this study was to evaluate the association between four distinct histopathological features: (1) tumor infiltrating lymphocytes, (2) mucinous differentiation, (3) tumor-stroma ratio, plus (4) tumor budding and two gene expression-based classifiers(1) consensus molecular subtypes (CMS) plus (2) colorectal cancer intrinsic subtypes (CRIS). All four histopathological features were retrospectively scored on hematoxylin and eosin sections of the most invasive part of the primary tumor in 218 stage II and III colon cancer patients from two independent cohorts (AMC-AJCC-90 and AC-ICAM). RNA-based CMS and CRIS assignments were independently obtained for all patients. Contingency tables were constructed and a χ2 test was used to test for statistical significance. Odds ratios with 95% confidence intervals were calculated. The presence of tumor infiltrating lymphocytes and a mucinous phenotype (>50% mucinous surface area) were strongly correlated with CMS1 (p < 0.001 and p = 0.008) and CRIS-A (p = 0.006 and p < 0.001). The presence of mucus (≥ 10%) was associated with CMS3: mucus was present in 64.1% of all CMS3 tumors (p < 0.001). Although a clear association between tumor-stroma ratio and CMS4 was established in this study (p = 0.006), still 32 out of 61 (52.5%) CMS4 tumors were scored as stroma-low, indicating that CMS4 tumors cannot be identified solely based on stromal content. Higher budding counts were seen in CMS4 and CRIS-B tumors (p = 0.045 and p = 0.046). No other associations of the measured parameters were seen for any of the other CRIS subtypes. Our analysis revealed clear associations between histopathologic features and CMS or CRIS subtypes. However, identification of distinct molecular subtypes solely based on histopathology proved to be infeasible. Combining both molecular and morphologic features could potentially improve patient stratification.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Estudos Retrospectivos , Hematoxilina , Amarelo de Eosina-(YS) , Neoplasias do Colo/genética , Neoplasias Colorretais/patologia , Expressão Gênica , RNA , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND: Advances in our understanding of the tumor microenvironment have radically changed the cancer field, highlighting the emerging need for biomarkers of an active, favorable tumor immune phenotype to aid treatment stratification and clinical prognostication. Numerous immune-related gene signatures have been defined; however, their prognostic value is often limited to one or few cancer types. Moreover, the area of non-coding RNA as biomarkers remains largely unexplored although their number and biological roles are rapidly expanding. METHODS: We developed a multi-step process to identify immune-related long non-coding RNA signatures with prognostic connotation in multiple TCGA solid cancer datasets. RESULTS: Using the breast cancer dataset as a discovery cohort we found 2988 differentially expressed lncRNAs between immune favorable and unfavorable tumors, as defined by the immunologic constant of rejection (ICR) gene signature. Mapping of the lncRNAs to a coding-non-coding network identified 127 proxy protein-coding genes that are enriched in immune-related diseases and functions. Next, we defined two distinct 20-lncRNA prognostic signatures that show a stronger effect on overall survival than the ICR signature in multiple solid cancers. Furthermore, we found a 3 lncRNA signature that demonstrated prognostic significance across 5 solid cancer types with a stronger association with clinical outcome than ICR. Moreover, this 3 lncRNA signature showed additional prognostic significance in uterine corpus endometrial carcinoma and cervical squamous cell carcinoma and endocervical adenocarcinoma as compared to ICR. CONCLUSION: We identified an immune-related 3-lncRNA signature with prognostic connotation in multiple solid cancer types which performed equally well and in some cases better than the 20-gene ICR signature, indicating that it could be used as a minimal informative signature for clinical implementation.
Assuntos
Carcinoma de Células Escamosas , RNA Longo não Codificante , Neoplasias do Colo do Útero , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral , Neoplasias do Colo do Útero/genéticaRESUMO
BACKGROUND: Large immunogenomic analyses have demonstrated the prognostic role of the functional orientation of the tumor microenvironment in adult solid tumors, this variable has been poorly explored in the pediatric counterpart. METHODS: We performed a systematic analysis of public RNAseq data (TARGET) for five pediatric tumor types (408 patients): Wilms tumor (WLM), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the kidney (CCSK) and rhabdoid tumor of the kidney (RT). We assessed the performance of the Immunologic Constant of Rejection (ICR), which captures an active Th1/cytotoxic response. We also performed gene set enrichment analysis (ssGSEA) and clustered more than 100 well characterized immune traits to define immune subtypes and compared their outcome. RESULTS: A higher ICR score was associated with better survival in OS and high risk NBL without MYCN amplification but with poorer survival in WLM. Clustering of immune traits revealed the same five principal modules previously described in adult tumors (TCGA). These modules divided pediatric patients into six immune subtypes (S1-S6) with distinct survival outcomes. The S2 cluster showed the best overall survival, characterized by low enrichment of the wound healing signature, high Th1, and low Th2 infiltration, while the reverse was observed in S4. Upregulation of the WNT/Beta-catenin pathway was associated with unfavorable outcomes and decreased T-cell infiltration in OS. CONCLUSIONS: We demonstrated that extracranial pediatric tumors could be classified according to their immune disposition, unveiling similarities with adults' tumors. Immunological parameters might be explored to refine diagnostic and prognostic biomarkers and to identify potential immune-responsive tumors.
Assuntos
Neoplasias Ósseas , Neuroblastoma , Osteossarcoma , Adulto , Criança , Humanos , Neuroblastoma/genética , Prognóstico , Microambiente Tumoral/genéticaRESUMO
Sepsis is an aberrant systemic inflammatory response mediated by the acute activation of the innate immune system. Neutrophils are important contributors to the innate immune response that controls the infection, but harbour the risk of collateral tissue damage such as thrombosis and organ dysfunction. A better understanding of the modulations of cellular processes in neutrophils and other blood cells during sepsis is needed and can be initiated via transcriptomic profile investigations. To that point, the growing repertoire of publicly accessible transcriptomic datasets serves as a valuable resource for discovering and/or assessing the robustness of biomarkers. We employed systematic literature mining, reductionist approach to gene expression profile and empirical in vitro work to highlight the role of a Nudix hydrolase family member, NUDT16, in sepsis. The relevance and implication of the expression of NUDT16 under septic conditions and the putative functional roles of this enzyme are discussed.
Assuntos
Sepse , Transcriptoma , Humanos , Pirofosfatases , Sepse/genética , Transcriptoma/genéticaRESUMO
We recently found by single-cell mass cytometry that ex vivo human B cells internalize graphene oxide (GO). The functional impact of such uptake on B cells remains unexplored. Here, we disclosed the effects of GO and amino-functionalized GO (GONH2) interacting with human B cells in vitro and ex vivo at the protein and gene expression levels. Moreover, our study considered three different subpopulations of B cells and their functionality in terms of: (i) cytokine production, (ii) activation markers, (iii) killing activity towards cancer cells. Single-cell mass cytometry screening revealed the higher impact of GO on cell viability towards naïve, memory, and plasma B cell subsets. Different cytokines such as granzyme B (GrB) and activation markers, like CD69, CD80, CD138, and CD38, were differently regulated by GONH2 compared to GO, supporting possible diverse B cell activation paths. Moreover, co-culture experiments also suggest the functional ability of both GOs to activate B cells and therefore enhance the toxicity towards HeLa cancer cell line. Complete transcriptomic analysis on a B cell line highlighted the distinctive GO and GONH2 elicited responses, inducing pathways such as B cell receptor and CD40 signaling pathways, key players for GrB secretion. B cells were regularly left behind the scenes in graphene biological studies; our results may open new horizons in the development of GO-based immune-modulatory strategies having B cell as main actors.
Assuntos
Grafite , Linfócitos B , Granzimas , Humanos , Regulação para CimaRESUMO
PReferentially expressed Antigen in Melanoma (PRAME) is a cancer testis antigen with restricted expression in somatic tissues and re-expression in poor prognostic solid tumours. PRAME has been extensively investigated as a target for immunotherapy, however, its role in modulating the anti-tumour immune response remains largely unknown. Here, we show that PRAME tumour expression is associated with worse survival in the TCGA breast cancer cohort, particularly in immune-unfavourable tumours. Using direct and indirect co-culture models, we found that PRAME overexpressing MDA-MB-468 breast cancer cells inhibit T cell activation and cytolytic potential, which could be partly restored by silencing of PRAME. Furthermore, silencing of PRAME reduced expression of several immune checkpoints and their ligands, including PD-1, LAG3, PD-L1, CD86, Gal-9 and VISTA. Interestingly, silencing of PRAME induced cancer cell killing to levels similar to anti-PD-L1 atezolizumab treatment. Comprehensive analysis of soluble inflammatory mediators and cancer cell expression of immune-related genes showed that PRAME tumour expression can suppress the expression and secretion of multiple pro-inflammatory cytokines, and mediators of T cell activation, differentiation and cytolysis. Together, our data indicate that targeting of PRAME offers a potential, novel dual therapeutic approach to specifically target tumour cells and regulate immune activation in the tumour microenvironment.
Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Imunomodulação/genética , Neoplasias/etiologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais , Quimiotaxia/genética , Quimiotaxia/imunologia , Biologia Computacional/métodos , Citocinas/metabolismo , Bases de Dados Genéticas , Gerenciamento Clínico , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , TranscriptomaRESUMO
Viruses are the second leading cause of cancer worldwide, and human papillomavirus (HPV)-associated head and neck cancers are increasing in incidence in the United States. HPV preferentially infects the crypts of the tonsils rather than the surface epithelium. The present study sought to characterize the unique microenvironment within the crypts to better understand the viral tropism of HPV to a lymphoid-rich organ. Laser-capture microdissection of distinct anatomic areas (crypts, surface epithelium, and germinal centers) of the tonsil, coupled with transcriptional analysis and multiparameter immunofluorescence staining demonstrated that the tonsillar crypts are enriched with myeloid populations that co-express multiple canonical and noncanonical immune checkpoints, including PD-L1, CTLA-4, HAVCR2 (TIM-3), ADORA2A, IDO1, BTLA, LGALS3, CDH1, CEACAM1, PVR, and C10orf54 (VISTA). The resident monocytes may foster a permissive microenvironment that facilitates HPV infection and persistence. Furthermore, the myeloid populations within HPV-associated tonsil cancers co-express the same immune checkpoints, providing insight into potential novel immunotherapeutic targets for HPV-associated head and neck cancers.
Assuntos
Alphapapillomavirus/fisiologia , Células Mieloides/patologia , Células Mieloides/virologia , Tonsila Palatina/patologia , Tonsila Palatina/virologia , Tropismo Viral/fisiologia , Antígenos CD/metabolismo , Antígenos B7/metabolismo , Antígeno B7-H1/metabolismo , Moléculas de Adesão Celular/metabolismo , Epitélio/patologia , Epitélio/virologia , Centro Germinativo/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Microdissecção e Captura a Laser , Monócitos/patologia , Receptores Virais/metabolismo , Transcriptoma/genéticaRESUMO
A cancer immune phenotype characterized by an active T-helper 1 (Th1)/cytotoxic response is associated with responsiveness to immunotherapy and favorable prognosis across different tumors. However, in some cancers, such an intratumoral immune activation does not confer protection from progression or relapse. Defining mechanisms associated with immune evasion is imperative to refine stratification algorithms, to guide treatment decisions and to identify candidates for immune-targeted therapy. Molecular alterations governing mechanisms for immune exclusion are still largely unknown. The availability of large genomic datasets offers an opportunity to ascertain key determinants of differential intratumoral immune response. We follow a network-based protocol to identify transcription regulators (TRs) associated with poor immunologic antitumor activity. We use a consensus of four different pipelines consisting of two state-of-the-art gene regulatory network inference techniques, regularized gradient boosting machines and ARACNE to determine TR regulons, and three separate enrichment techniques, including fast gene set enrichment analysis, gene set variation analysis and virtual inference of protein activity by enriched regulon analysis to identify the most important TRs affecting immunologic antitumor activity. These TRs, referred to as master regulators (MRs), are unique to immune-silent and immune-active tumors, respectively. We validated the MRs coherently associated with the immune-silent phenotype across cancers in The Cancer Genome Atlas and a series of additional datasets in the Prediction of Clinical Outcomes from Genomic Profiles repository. A downstream analysis of MRs specific to the immune-silent phenotype resulted in the identification of several enriched candidate pathways, including NOTCH1, TGF-$\beta $, Interleukin-1 and TNF-$\alpha $ signaling pathways. TGFB1I1 emerged as one of the main negative immune modulators preventing the favorable effects of a Th1/cytotoxic response.
Assuntos
Biomarcadores Tumorais , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias/etiologia , Neoplasias/metabolismo , Fenótipo , Biologia Computacional/métodos , Bases de Dados Genéticas , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Imunofenotipagem , Reprodutibilidade dos Testes , Transdução de Sinais , TranscriptomaRESUMO
Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in â¼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.
Assuntos
Mutação em Linhagem Germinativa/genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Estudo de Associação Genômica Ampla , Humanos , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Característica Quantitativa Herdável , Proteína p107 Retinoblastoma-Like/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMO
MOTIVATION: We previously described the construction and characterization of fixed reusable blood transcriptional module repertoires. More recently we released a third iteration ('BloodGen3' module repertoire) that comprises 382 functionally annotated modules and encompasses 14 168 transcripts. Custom bioinformatic tools are needed to support downstream analysis, visualization and interpretation relying on such fixed module repertoires. RESULTS: We have developed and describe here an R package, BloodGen3Module. The functions of our package permit group comparison analyses to be performed at the module-level, and to display the results as annotated fingerprint grid plots. A parallel workflow for computing module repertoire changes for individual samples rather than groups of samples is also available; these results are displayed as fingerprint heatmaps. An illustrative case is used to demonstrate the steps involved in generating blood transcriptome repertoire fingerprints of septic patients. Taken together, this resource could facilitate the analysis and interpretation of changes in blood transcript abundance observed across a wide range of pathological and physiological states. AVAILABILITY AND IMPLEMENTATION: The BloodGen3Module package and documentation are freely available from Github: https://github.com/Drinchai/BloodGen3Module. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
RESUMO
Breast cancer largely dominates the global cancer burden statistics; however, there are striking disparities in mortality rates across countries. While socioeconomic factors contribute to population-based differences in mortality, they do not fully explain disparity among women of African ancestry (AA) and Arab ancestry (ArA) compared to women of European ancestry (EA). In this study, we sought to identify molecular differences that could provide insight into the biology of ancestry-associated disparities in clinical outcomes. We applied a unique approach that combines the use of curated survival data from The Cancer Genome Atlas (TCGA) Pan-Cancer clinical data resource, improved single-nucleotide polymorphism-based inferred ancestry assignment, and a novel breast cancer subtype classification to interrogate the TCGA and a local Arab breast cancer dataset. We observed an enrichment of BasalMyo tumors in AA patients (38 vs 16.5% in EA, p = 1.30E - 10), associated with a significant worse overall (hazard ratio (HR) = 2.39, p = 0.02) and disease-specific survival (HR = 2.57, p = 0.03). Gene set enrichment analysis of BasalMyo AA and EA samples revealed differences in the abundance of T-regulatory and T-helper type 2 cells, and enrichment of cancer-related pathways with prognostic implications (AA: PI3K-Akt-mTOR and ErbB signaling; EA: EGF, estrogen-dependent and DNA repair signaling). Strikingly, AMPK signaling was associated with opposing prognostic connotation (AA: 10-year HR = 2.79, EA: 10-year HR = 0.34). Analysis of ArA patients suggests enrichment of BasalMyo tumors with a trend for differential enrichment of T-regulatory cells and AMPK signaling. Together, our findings suggest that the disparity in the clinical outcome of AA breast cancer patients is likely related to differences in cancer-related and microenvironmental features.
RESUMO
BACKGROUND: The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS: We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFß, EMT and PI3Kγ signatures. RESULTS: Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS: The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.
Assuntos
Neoplasias/genética , Neoplasias/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Estudos de Coortes , Bases de Dados Genéticas , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Vigilância Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Análise de SobrevidaRESUMO
INTRODUCTION: Natural killer (NK) cells and natural killer T (NKT) cells are implicated in the development and progression of colorectal cancer (CRC). Tumor cells express NK cell receptor ligands that modulate their function. This study aimed to investigate the expression of such ligands in CRC in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. METHODS: Primary tumor tissues were analyzed for protein expression of NK cell ligands using immunohistochemistry with automated image analysis in a cohort of 78 CRC patients. For 24 of the 78 patients, RNA expression of NK cell ligands was analyzed in primary tumor tissue using RNA sequencing. Receptor expression on circulating NK- and NKT cells was previously measured by us in 71 of the 78 patients using flow cytometry. RESULTS: High Proliferating Cell Nuclear Antigen (PCNA) protein expression in the primary tumor associated with shorter disease-free survival (DFS) of CRC patients (P = 0.026). A trend was observed towards shorter DFS in CRC patients with above-median galectin-3 protein expression in the primary tumor (P = 0.055). High protein expression of galectin-3, CD1d, and human leukocyte antigen (HLA) class I, and high RNA expression of UL16-binding protein (ULBP)-1, -2, and -5, and HLA-E in the tumor tissue correlated with low expression of the corresponding receptors on circulating NK- or NKT cells (P < 0.05). CONCLUSIONS: Galectin-3 and PCNA expression in the primary tumor may be prognostic biomarkers in CRC patients. Furthermore, our results suggest that NK cell receptor ligands expressed by tumor cells may modulate the phenotype of circulating NK- and NKT cells, and facilitate immune escape of metastasizing cells.
Assuntos
Neoplasias Colorretais/imunologia , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Galectina 3/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Fenótipo , Antígeno Nuclear de Célula em Proliferação/imunologiaRESUMO
According to publicly available transcriptome datasets, the abundance of Annexin A3 (ANXA3) is robustly increased during the course of sepsis; however, no studies have examined the biological significance or clinical relevance of ANXA3 in this pathology. Here we explored this interpretation gap and identified possible directions for future research. Based on reference transcriptome datasets, we found that ANXA3 expression is restricted to neutrophils, is upregulated in vitro after exposure to plasma obtained from septic patients, and is associated with adverse clinical outcomes. Secondly, an increase in ANXA3 transcript abundance was also observed in vivo, in the blood of septic patients in multiple independent studies. ANXA3 is known to mediate calcium-dependent granules-phagosome fusion in support of microbicidal activity in neutrophils. More recent work has also shown that ANXA3 enhances proliferation and survival of tumour cells via a Caspase-3-dependent mechanism. And this same molecule is also known to play a critical role in regulation of apoptotic events in neutrophils. Thus, we posit that during sepsis ANXA3 might either play a beneficial role, by facilitating microbial clearance and resolution of the infection; or a detrimental role, by prolonging neutrophil survival, which is known to contribute to sepsis-mediated organ damage.
Assuntos
Anexina A3/metabolismo , Neutrófilos/imunologia , Sepse/imunologia , Acesso à Informação , Animais , Anexina A3/genética , Caspase 3/metabolismo , Conjuntos de Dados como Assunto , Humanos , Fagossomos/metabolismo , TranscriptomaRESUMO
Human leukocyte antigen G (HLA-G), known as a central protein in providing immune tolerance to the fetus in pregnant women, is also studied for a possible role in tumor development. Many studies have claimed HLA-G as a new immune checkpoint in cancer. Therefore, HLA-G and its receptors might be targets for immune checkpoint blockade in cancer immunotherapy. In order to substantiate that HLA-G is indeed an immune checkpoint in cancer, two important questions need to be answered: (1) To what extent is HLA-G expressed in the tumor by cancer cells? and (2) What is the function of HLA-G in cancer immune evasion? In this review, we discuss these questions. We agree that HLA-G is a potentially new immune checkpoint in cancer, but additional evidence is required to show the extent of intra-tumor and inter-tumor expression. These studies should focus on tumor expression patterns of the seven different HLA-G isoforms and of the receptors for HLA-G. Furthermore, specific roles for the different HLA-G isoforms should be established.