RESUMO
In this article we present a theoretical investigation of gold-silica-gold nanostructures and their properties depending on layer thickness and diameter. We found a remarkable sensitive behavior in the coupling of surface and bulk plasmons with respect to the outer geometry of the disk-like resonators leading to a superposition of distinct modes with a time-dependent amplitude structure. Furthermore, we show a rather complex temporal evolution of plasmonic surface modes depending on the top layer thickness and the asymmetry of the metal disk radii. The results suggest the coherent control of the time-dependent resonant coupling between surface and volume modes by adaptive pulse shaping and foster the field of time-dependent spectroscopy of thin film hybrid nanostructures with single layer thickness down to the two-dimensional limit.
RESUMO
We propose an experimental arrangement to image, with attosecond resolution, transient surface plasmonic excitations. The required modifications to state-of-the-art setups used for attosecond streaking experiments from solid surfaces only involve available technology. Buildup and lifetimes of surface plasmon polaritons can be extracted and local modulations of the exciting optical pulse can be diagnosed in situ.
RESUMO
Fresnel zone plates are used for imaging at extreme ultraviolet and soft x-ray wavelengths. Fabricating these zone plates is challenging due to small structure sizes (<150 nm) and complex nanostructuring processes. Fabrication techniques such as electron-beam lithography followed by etching and electroplating processes have been developed over the years. We are reporting on the development of a technique incorporating focused gallium ion-beam lithography to fabricate Fresnel zone plates with 120 nm outermost structure size in a process that combines pattern exposure and structure transfer in one single step. The fabricated zone plates were successfully applied in a microscopic setup at λ=13 nm wavelength.