Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909519

RESUMO

Riboswitches are non-coding RNA elements that play vital roles in regulating gene expression. Their specific ligand-dependent structural reorganization facilitates their use as templates for design of engineered RNA switches for therapeutics, nanotechnology and synthetic biology. T-box riboswitches bind tRNAs to sense aminoacylation and control gene expression via transcription attenuation or translation inhibition. Here we determine the cryo-EM structure of the wild-type Mycobacterium smegmatis ileS T-box in complex with its cognate tRNA Ile . This structure shows a very flexible antisequestrator region that tolerates both 3'-OH and 2',3'-cyclic phosphate modification at the 3' end of tRNA Ile . Elongation of one helical turn (11-base pair) in both the tRNA acceptor arm and T-box Stem III maintains T-box-tRNA complex formation and increases the selectivity for tRNA 3' end modification. Moreover, elongation of Stem III results in ∼6-fold tighter binding to tRNA, which leads to increased sensitivity of downstream translational regulation indicated by precedent translation. Our results demonstrate that cryo-EM can guide RNA engineering to design improved riboswitch modules for translational regulation, and potentially a variety of additional functions.

2.
J Bacteriol ; 204(1): e0052421, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35040684
3.
J Biol Chem ; 295(20): 6849-6860, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209653

RESUMO

There are a number of riboswitches that utilize the same ligand-binding domain to regulate transcription or translation. S-box (SAM-I) riboswitches, including the riboswitch present in the Bacillus subtilis metI gene, which encodes cystathionine γ-synthase, regulate the expression of genes involved in methionine metabolism in response to SAM, primarily at the level of transcriptional attenuation. A rarer class of S-box riboswitches is predicted to regulate translation initiation. Here we identified and characterized a translational S-box riboswitch in the metI gene from Desulfurispirillum indicum The regulatory mechanisms of riboswitches are influenced by the kinetics of ligand interaction. The half-life of the translational D. indicum metI RNA-SAM complex is significantly shorter than that of the transcriptional B. subtilis metI RNA. This finding suggests that, unlike the transcriptional RNA, the translational metI riboswitch can make multiple reversible regulatory decisions. Comparison of both RNAs revealed that the second internal loop of helix P3 in the transcriptional RNA usually contains an A residue, whereas the translational RNA contains a C residue that is conserved in other S-box RNAs that are predicted to regulate translation. Mutational analysis indicated that the presence of an A or C residue correlates with RNA-SAM complex stability. Biochemical analyses indicate that the internal loop sequence critically determines the stability of the RNA-SAM complex by influencing the flexibility of residues involved in SAM binding and thereby affects the molecular mechanism of riboswitch function.


Assuntos
Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Transcrição Gênica , Bactérias/genética , Clostridium/genética , Clostridium/metabolismo , Ligantes , RNA Bacteriano/genética , Riboswitch
4.
Mol Microbiol ; 112(4): 1199-1218, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31340077

RESUMO

Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pareamento de Bases , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Regulon
5.
Microbiol Spectr ; 6(4)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30051797

RESUMO

The T-box riboswitch is a unique, RNA-based regulatory mechanism that modulates expression of a wide variety of amino acid-related genes, predominantly in Firmicutes. RNAs of this class selectively bind a specific cognate tRNA, utilizing recognition of the tRNA anticodon and other tRNA features. The riboswitch monitors the aminoacylation status of the tRNA to induce expression of the regulated downstream gene(s) at the level of transcription antitermination or derepression of translation initiation in response to reduced tRNA charging via stabilization of an antiterminator or antisequestrator. Recent biochemical and structural studies have revealed new features of tRNA recognition that extend beyond the initially identified Watson-Crick base-pairing of a codon-like sequence in the riboswitch with the tRNA anticodon, and residues in the antiterminator or antisequestrator with the tRNA acceptor end. These studies have revealed new tRNA contacts and new modes of riboswitch function and ligand recognition that expand our understanding of RNA-RNA recognition and the biological roles of tRNA.


Assuntos
Regulação Bacteriana da Expressão Gênica , RNA de Transferência/fisiologia , Riboswitch/fisiologia , Anticódon/genética , Anticódon/metabolismo , Pareamento de Bases , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , Elementos Reguladores de Transcrição , Riboswitch/genética
6.
Proc Natl Acad Sci U S A ; 115(15): 3894-3899, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581302

RESUMO

T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNAIle ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNAIle and the other between the Stem IIA/B pseudoknot and the D loop of tRNAIle These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.


Assuntos
Isoleucina-tRNA Ligase/genética , Mycobacterium smegmatis/genética , RNA Bacteriano/química , RNA de Transferência/química , Elementos Reguladores de Transcrição , Riboswitch , Regulação Bacteriana da Expressão Gênica , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
8.
Annu Rev Microbiol ; 70: 361-74, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27607554

RESUMO

Riboswitches are RNA elements that act on the mRNA with which they are cotranscribed to modulate expression of that mRNA. These elements are widely found in bacteria, where they have a broad impact on gene expression. The defining feature of riboswitches is that they directly recognize a physiological signal, and the resulting shift in RNA structure affects gene regulation. The majority of riboswitches respond to cellular metabolites, often in a feedback loop to repress synthesis of the enzymes used to produce the metabolite. Related elements respond to the aminoacylation status of a specific tRNA or to a physical parameter, such as temperature or pH. Recent studies have identified new classes of riboswitches and have revealed new insights into the molecular mechanisms of signal recognition and gene regulation. Application of structural and biophysical approaches has complemented previous genetic and biochemical studies, yielding new information about how different riboswitches operate.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Riboswitch , Bactérias/química , Bactérias/classificação , Bactérias/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética
12.
Life (Basel) ; 5(4): 1567-82, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26426057

RESUMO

The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNA(Ala) directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNA(Ala) (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNA(Ala) species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNA(Ala) may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.

13.
J Biol Chem ; 290(38): 23336-47, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229106

RESUMO

Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.


Assuntos
Anticódon/química , Bacillus subtilis/química , Códon/química , RNA Bacteriano/química , RNA de Transferência de Glicina/química , Riboswitch/fisiologia , Anticódon/genética , Anticódon/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Códon/genética , Códon/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo
14.
J Bacteriol ; 197(9): 1624-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733610

RESUMO

UNLABELLED: Misincorporation of D-tyrosine (D-Tyr) into cellular proteins due to mischarging of tRNA(Tyr) with D-Tyr by tyrosyl-tRNA synthetase inhibits growth and biofilm formation of Bacillus subtilis. Furthermore, many B. subtilis strains lack a functional gene encoding D-aminoacyl-tRNA deacylase, which prevents misincorporation of D-Tyr in most organisms. B. subtilis has two genes that encode tyrosyl-tRNA synthetase: tyrS is expressed under normal growth conditions, and tyrZ is known to be expressed only when tyrS is inactivated by mutation. We hypothesized that tyrZ encodes an alternate tyrosyl-tRNA synthetase, expression of which allows the cell to grow when D-Tyr is present. We show that TyrZ is more selective for L-Tyr over D-Tyr than is TyrS; however, TyrZ is less efficient overall. We also show that expression of tyrZ is required for growth and biofilm formation in the presence of D-Tyr. Both tyrS and tyrZ are preceded by a T box riboswitch, but tyrZ is found in an operon with ywaE, which is predicted to encode a MarR family transcriptional regulator. Expression of tyrZ is repressed by YwaE and also is regulated at the level of transcription attenuation by the T box riboswitch. We conclude that expression of tyrZ may allow growth when excess D-Tyr is present. IMPORTANCE: Accurate protein synthesis requires correct aminoacylation of each tRNA with the cognate amino acid and discrimination against related compounds. Bacillus subtilis produces D-Tyr, an analog of L-Tyr that is toxic when incorporated into protein, during stationary phase. Most organisms utilize a D-aminoacyl-tRNA deacylase to prevent misincorporation of D-Tyr. This work demonstrates that the increased selectivity of the TyrZ form of tyrosyl-tRNA synthetase may provide a mechanism by which B. subtilis prevents misincorporation of D-Tyr in the absence of a functional D-aminoacyl-tRNA deacylase gene.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Riboswitch , Fatores de Transcrição/metabolismo , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Especificidade por Substrato , Tirosina/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(4): 1113-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583497

RESUMO

The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5' untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine-Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNA(Ile) and tRNA(Ile)-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch.


Assuntos
Actinobacteria , Proteínas de Bactérias , Isoleucina-tRNA Ligase , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Bacteriano , RNA de Transferência , Riboswitch/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Isoleucina-tRNA Ligase/biossíntese , Isoleucina-tRNA Ligase/genética , Conformação de Ácido Nucleico , Estabilidade de RNA/fisiologia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
16.
Biochim Biophys Acta ; 1839(10): 899, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25158154
17.
Biochim Biophys Acta ; 1839(10): 959-963, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24816551

RESUMO

The T box riboswitch is a cis-acting regulatory RNA that controls expression of amino acid-related genes in response to the aminoacylation state of a specific tRNA. Multiple genes in the same organism can utilize this mechanism, with each gene responding independently to its cognate tRNA. The uncharged tRNA interacts directly with the regulatory RNA element, and this interaction promotes readthrough of an intrinsic transcriptional termination site upstream of the regulated coding sequence. A second class of T box elements uses a similar tRNA-dependent response to regulate translation initiation. This review will describe the current state of our knowledge about this regulatory system. This article is part of a Special Issue entitled: Riboswitches.

18.
Proc Natl Acad Sci U S A ; 110(18): 7240-5, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589841

RESUMO

The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.


Assuntos
Regulação da Expressão Gênica , RNA de Transferência/química , RNA de Transferência/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Sequência de Bases , Cromatografia em Gel , Biologia Computacional , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , Primers do DNA/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Hidroxilação/efeitos da radiação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/genética , Mutagênese/efeitos da radiação , Conformação de Ácido Nucleico , Ribonuclease P/metabolismo , Espalhamento a Baixo Ângulo , Raios Ultravioleta
19.
J Bacteriol ; 194(13): 3386-94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544272

RESUMO

Expression of conjugative transfer and virulence functions of the Enterococcus faecalis antibiotic resistance plasmid pCF10 is regulated by the interaction of the pheromone receptor protein PrgX with two DNA binding operator sites (XBS1 and XBS2) upstream from the transcription start site of the prgQ operon (encoding the pCF10 transfer machinery) and by posttranscriptional mechanisms. Occupancy of both binding sites by PrgX dimers results in repression of the prgQ promoter. Structural and genetic studies suggest that the peptide pheromone cCF10 functions by binding to PrgX and altering its oligomerization state, resulting in reduced occupancy of XBSs and increased prgQ transcription. The DNA binding activity of PrgX has additional indirect regulatory effects on prgQ transcript levels related to the position of the convergently transcribed prgX operon. This has complicated interpretation of previous analyses of the control of prgQ expression by PrgX. We report here the results of in vivo and in vitro experiments examining the direct effects of PrgX on transcription from the prgQ promoter, as well as quantitative correlation between the concentrations of XBSs, PrgX protein, and prgQ promoter activity in vivo. The results of electrophoretic mobility shift assays and quantitative analysis of prgQ transcription in vitro and in vivo support the predicted roles of the PrgX DNA binding sites in prgQ transcription regulation. The results also suggest the existence of other factors that impede PrgX repression or enhance its antagonism by cCF10 in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Feromônios/farmacologia , Regiões Promotoras Genéticas/fisiologia , Receptores de Feromônios/metabolismo , Proteínas de Bactérias/genética , Conjugação Genética , Ensaio de Desvio de Mobilidade Eletroforética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Feromônios/fisiologia , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas/genética , Receptores de Feromônios/genética , Transcrição Gênica/efeitos dos fármacos
20.
Nucleic Acids Res ; 40(12): 5706-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22416067

RESUMO

The ever-changing environment of a bacterial cell requires sophisticated mechanisms to adjust gene expression in response to changes in nutrient availability. L box riboswitch RNAs regulate gene expression in response to cellular lysine (lys) concentrations in the absence of additional regulatory factors. In Bacillus subtilis, binding of lysine (lys) to the L box RNA causes premature transcription termination in the leader region upstream of the lysC coding sequence. To date, little is known about the specific RNA-lys interactions required for transcription termination. In this study, we characterize features of the B. subtilis lysC leader RNA responsible for lys specificity, and structural elements of the lys molecule required for recognition. The wild-type lysC leader RNA can recognize and discriminate between lys and lys analogs. We identified leader RNA variants with mutations in the lys-binding pocket that exhibit changes in the specificity of ligand recognition. These data demonstrate that lysC leader RNA specificity is the result of recognition of ligand features through a series of distinct interactions between lys and nucleotides that comprise the lys-binding pocket, and provide insight into the molecular mechanisms employed by L box riboswitch RNAs to bind and recognize lys.


Assuntos
Bacillus subtilis/genética , Lisina/farmacologia , RNA Bacteriano/química , Riboswitch , Regiões 5' não Traduzidas , Aspartato Quinase/biossíntese , Aspartato Quinase/genética , Bacillus subtilis/enzimologia , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Ligantes , Lisina/análogos & derivados , Lisina/química , Dados de Sequência Molecular , Mutação , Potássio/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA